Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
No.SP2019/50
MSMT CR SGS
NR.CZ.02.2.69/0.0./0.0./16_027/0008463
Science Without Borders, operational programme Research, Development and Education
VEGA 1/0164/17
Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences
VEGA 1/0146/18
Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences
PubMed
31684189
PubMed Central
PMC6915511
DOI
10.3390/nano9111559
PII: nano9111559
Knihovny.cz E-zdroje
- Klíčová slova
- foliar application, foxtail millet, nano-fertilizers, quantitative, nutritional, and physiological parameters, zinc-oxide nanoparticles,
- Publikační typ
- časopisecké články MeSH
It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet's quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries.
Zobrazit více v PubMed
Schils R., Olesen J.E., Kersebaum K.-C., Rijk B., Oberforster M., Kalyada V., Khitrykau M., Gobin A., Kirchev H., Manolova V., et al. Cereal yield gaps across Europe. Eur.J. Agron. 2018;101:109–120. doi: 10.1016/j.eja.2018.09.003. DOI
You L., Wood-Sichra U., Fritz S., Guo Z., See L., Koo J. Spatial Production Allocation Model (SPAM) [(accessed on 21 April 2015)];2014 Available online: http://mapspam.
Chandra D., Chandra S., Sharma A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Hum. Wellness. 2016;5:149–155. doi: 10.1016/j.fshw.2016.05.004. DOI
Zhang B., Liu J., Cheng L., Zhang Y., Hou S., Sun Z., Li H., Han Y. Carotenoid composition and expression of biosynthetic genes in yellow and white foxtail millet [Setaria italica (L.) Beauv] J. Cereal Sci. 2019;85:84–90. doi: 10.1016/j.jcs.2018.11.005. DOI
Liu J., Tang X., Zhang Y., Zhao W. Determination of the volatile composition in brown millet, milled millet and millet bran by gas chromatography/mass spectrometry. Molecules. 2012;17:2271–2282. doi: 10.3390/molecules17032271. PubMed DOI PMC
Brink M., Belay G., De Wet J. Plant Resources of Tropical Africa 1: Cereals and Pulses. PROTA Foundation; Wageningen, The Netherlands: 2006.
Rasnake M., Lacefield G., Miksch D., Bitzer M. Producing Summer Annual Grasses for Emergency or Supplemental Forage. University of Kentucky; Lexington, KY, USA: 1998. AGR–88.
Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy K.R., Sreeprasad T.S., Sajanlal P.R., Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012;35:905–927. doi: 10.1080/01904167.2012.663443. DOI
López-Vargas E., Ortega-Ortíz H., Cadenas-Pliego G., de Alba Romenus K., Cabrera de la Fuente M., Benavides-Mendoza A., Juárez-Maldonado A. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl. Sci. 2018;8:1020. doi: 10.3390/app8071020. DOI
Yang F., Hong F., You W., Liu C., Gao F., Wu C., Yang P. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006;110:179–190. doi: 10.1385/BTER:110:2:179. PubMed DOI
Bellesi F.J., Arata A.F., Martínez M., Arrigoni A.C., Stenglein S.A., Dinolfo M.I. Degradation of gluten proteins by Fusarium species and their impact on the grain quality of bread wheat. J. Stored Prod. Res. 2019;83:1–8. doi: 10.1016/j.jspr.2019.05.007. DOI
Wagner G., Korenkov V., Judy J., Bertsch P. Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials. 2016;6:50. doi: 10.3390/nano6030050. PubMed DOI PMC
Gkanatsiou C., Ntalli N., Menkissoglu-Spiroudi U., Dendrinou-Samara C. Essential metal-based nanoparticles (copper/iron nps) as potent nematicidal agents against Meloidogyne spp. J. Nanotechnol. Res. 2019;2:043–057. doi: 10.26502/fjnr004. DOI
Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI
Sabir S., Arshad M., Chaudhari S.K. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014;2014:1–8. doi: 10.1155/2014/925494. PubMed DOI PMC
Estrada-Urbina J., Cruz-Alonso A., Santander-González M., Méndez-Albores A., Vázquez-Durán A. Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials. 2018;8:247. doi: 10.3390/nano8040247. PubMed DOI PMC
Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations. Toxicol. Environ. Chem. 2014;96:861–868. doi: 10.1080/02772248.2014.994517. DOI
Schmidt M., Horstmann S., De Colli L., Danaher M., Speer K., Zannini E., Arendt E.K. Impact of fungal contamination of wheat on grain quality criteria. J. Cereal Sci. 2016;69:95–103. doi: 10.1016/j.jcs.2016.02.010. DOI
Matzen N., Ravn Jørgensen J., Holst N., Nistrup Jørgensen L. Grain quality in wheat—Impact of disease management. Eur. J. Agron. 2019;103:152–164. doi: 10.1016/j.eja.2018.12.007. DOI
Nandhini M., Rajini S.B., Udayashankar A.C., Niranjana S.R., Lund O.S., Shetty H.S., Prakash H.S. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 2019;121:103–112. doi: 10.1016/j.cropro.2019.03.015. DOI
Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI
Rizwan M., Ali S., Zia ur Rehman M., Adrees M., Arshad M., Qayyum M.F., Ali L., Hussain A., Chatha S.A.S., Imran M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 2019;248:358–367. doi: 10.1016/j.envpol.2019.02.031. PubMed DOI
Xiang L., Zhao H.-M., Li Y.-W., Huang X.-P., Wu X.-L., Zhai T., Yuan Y., Cai Q.-Y., Mo C.-H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI
Čurlík J., Šefčík P. Slovak-Ministry for the Environ. MŽP. Soil Science and Conservation Research Institute (SSCRI); Bratislava, Slovakia: 1999. Geochemical atlas of the Slovak Republic. Part V Soils; p. 99.
Tian B., Luan S., Zhang L., Liu Y., Zhang L., Li H. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res. 2018;217:104–112. doi: 10.1016/j.fcr.2017.12.013. DOI
Duflo E., Banerjee A. Handbook of Field Experiments. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017.
Chisi M., Peterson G. Sorghum and Millets. Elsevier; Amsterdam, The Netherlands: 2019. Breeding and Agronomy; pp. 23–50.
Choudhary M., Rana K.S., Bana R.S., Ghasal P.C., Choudhary G.L., Jakhar P., Verma R.K. Energy budgeting and carbon footprint of pearl millet—Mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem. Energy. 2017;141:1052–1058. doi: 10.1016/j.energy.2017.09.136. DOI
Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., et al. The Uniform Methods of Soil Analysis. VÚPOP; Bratislava, Slovakia: 2011. p. 136.
Šinkovičová M., Igaz D., Kondrlová E., Jarošová M. Soil particle size analysis by laser diffractometry: Result comparison with pipette method. IOP Conf. Ser. Mater. Sci. Eng. 2017;245:072025. doi: 10.1088/1757-899X/245/7/072025. DOI
Kondrlova E., Igaz D., Horak J. Effect of calculation models on particle size distribution estimated by laser diffraction. J. Ege Univ. Fac. Agric. Spec. Issue. 2015:21–27.
Kováčik P., Wiśniowska-Kielian B., Smoleń S. Effect of application of Mg-tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grain. J. Elem. 2018;23:697–708.
Lindsay W.L., Norvell W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x. DOI
Burghardt M., Schreiber L., Riederer M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 1998;46:1593–1602. doi: 10.1021/jf970737g. DOI
Räsch A., Hunsche M., Mail M., Burkhardt J., Noga G., Pariyar S. Agricultural adjuvants may impair leaf transpiration and photosynthetic activity. Plant Physiol. Biochem. 2018;132:229–237. doi: 10.1016/j.plaphy.2018.08.042. PubMed DOI
Meier U. Growth Stages of Mono-and Dicotyledonous Plants. Blackwell Wissenschafts-Verlag; Berlin, Germany: 1997.
Shahidi F. Extraction and measurement of total lipids. Curr. Protoc. Food Anal. Chem. 2003;7 doi: 10.1002/0471142913.fad0101s07. DOI
Dvořáček V., Bradová J., Sedláček T., Šárka E. Relationships among Mixolab rheological properties of isolated starch and white flour and quality of baking products using different wheat cultivars. J. Cereal Sci. 2019;89:102801. doi: 10.1016/j.jcs.2019.102801. DOI
Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978–989. doi: 10.1071/FP09123. PubMed DOI
Kovár M., Černý I., Ernst D. Analysis of relations between crop temperature indices and yield of different sunflower hybrids foliar treated by biopreparations. Agriculture (Polnohospodárstvo) 2016;62:28–40. doi: 10.1515/agri-2016-0004. DOI
Kirnak H., Irik H.A., Unlukara A. Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Sci. Hortic. 2019;256:108608. doi: 10.1016/j.scienta.2019.108608. DOI
Idso S.B., Jackson R.D., Pinter P.J., Reginato R.J., Hatfield J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981;24:45–55. doi: 10.1016/0002-1571(81)90032-7. DOI
Archana B., Manjunath K., Nagaraju G., Chandra Sekhar K.B., Kottam N. Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int. J. Hydrogen Energy. 2017;42:5125–5131. doi: 10.1016/j.ijhydene.2016.11.099. DOI
Drissi S., Houssa A.A., Bamouh A., Benbella M. Corn silage (Zea mays L.) response to zinc foliar spray concentration when grown on sandy soil. J. Agric. Sci. 2015;7:68–79. doi: 10.5539/jas.v7n2p68. DOI
Torabian S., Zahedi M., Khoshgoftar A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 2016;39:172–180. doi: 10.1080/01904167.2015.1009107. DOI
Singh J., Kumar S., Alok A., Upadhyay S.K., Rawat M., Tsang D.C.W., Bolan N., Kim K.-H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 2019;214:1061–1070. doi: 10.1016/j.jclepro.2019.01.018. DOI
Food and Agriculture Organization of the United Nations . Sorghum and Millets in Human Nutrition. FAO; Rome, Italy: 1995. (Food and Nutrition Series)
Mitchell M., Pritchard J., Okada S., Larroque O., Yulia D., Pettolino F., Szydlowski N., Singh S., Liu Q., Ral J.-P. Oil accumulation in transgenic potato tubers alters starch quality and nutritional profile. Front. Plant Sci. 2017;8:554. doi: 10.3389/fpls.2017.00554. PubMed DOI PMC
Raigond P., Raigond B., Kaundal B., Singh B., Joshi A., Dutt S. Effect of zinc nanoparticles on antioxidative system of potato plants. J. Environ. Biol. 2017;38:435–439. doi: 10.22438/jeb/38/3/MS-209. DOI
Zhang Q., Chen J.M., Ju W., Wang H., Qiu F., Yang F., Fan W., Huang Q., Wang Y.-P., Feng Y., et al. Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves. Remote Sens. Environ. 2017;194:1–15. doi: 10.1016/j.rse.2017.03.012. DOI
Taghvaeian S., Comas L., DeJonge K.C., Trout T.J. Conventional and simplified canopy temperature indices predict water stress in sunflower. Agric. Water Manag. 2014;144:69–80. doi: 10.1016/j.agwat.2014.06.003. DOI
Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral