Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria italica L.) under Field Conditions

. 2019 Nov 03 ; 9 (11) : . [epub] 20191103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31684189

Grantová podpora
No.SP2019/50 MSMT CR SGS
NR.CZ.02.2.69/0.0./0.0./16_027/0008463 Science Without Borders, operational programme Research, Development and Education
VEGA 1/0164/17 Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences
VEGA 1/0146/18 Scientific Grant Agency of the Ministry of Education, Science, Research and Sports of the Slovak Republic and the Slovak Academy of Sciences

It has been shown that the foliar application of inorganic nano-materials on cereal plants during their growth cycle enhances the rate of plant productivity by providing a micro-nutrient source. We therefore studied the effects of foliarly applied ZnO nanoparticles (ZnO NPs) on Setaria italica L. foxtail millet's quantitative, nutritional, and physiological parameters. Scanning electron microscopy showed that the ZnO NPs have an average particle size under 20 nm and dominant spherically shaped morphology. Energy dispersive X-ray spectrometry then confirmed ZnO NP homogeneity, and X-ray diffraction verified their high crystalline and wurtzite-structure symmetry. Although plant height, thousand grain weight, and grain yield quantitative parameters did not differ statistically between ZnO NP-treated and untreated plants, the ZnO NP-treated plant grains had significantly higher oil and total nitrogen contents and significantly lower crop water stress index (CWSI). This highlights that the slow-releasing nano-fertilizer improves plant physiological properties and various grain nutritional parameters, and its application is therefore especially beneficial for progressive nanomaterial-based industries.

Zobrazit více v PubMed

Schils R., Olesen J.E., Kersebaum K.-C., Rijk B., Oberforster M., Kalyada V., Khitrykau M., Gobin A., Kirchev H., Manolova V., et al. Cereal yield gaps across Europe. Eur.J. Agron. 2018;101:109–120. doi: 10.1016/j.eja.2018.09.003. DOI

You L., Wood-Sichra U., Fritz S., Guo Z., See L., Koo J. Spatial Production Allocation Model (SPAM) [(accessed on 21 April 2015)];2014 Available online: http://mapspam.

Chandra D., Chandra S., Sharma A.K. Review of Finger millet (Eleusine coracana (L.) Gaertn): A power house of health benefiting nutrients. Food Sci. Hum. Wellness. 2016;5:149–155. doi: 10.1016/j.fshw.2016.05.004. DOI

Zhang B., Liu J., Cheng L., Zhang Y., Hou S., Sun Z., Li H., Han Y. Carotenoid composition and expression of biosynthetic genes in yellow and white foxtail millet [Setaria italica (L.) Beauv] J. Cereal Sci. 2019;85:84–90. doi: 10.1016/j.jcs.2018.11.005. DOI

Liu J., Tang X., Zhang Y., Zhao W. Determination of the volatile composition in brown millet, milled millet and millet bran by gas chromatography/mass spectrometry. Molecules. 2012;17:2271–2282. doi: 10.3390/molecules17032271. PubMed DOI PMC

Brink M., Belay G., De Wet J. Plant Resources of Tropical Africa 1: Cereals and Pulses. PROTA Foundation; Wageningen, The Netherlands: 2006.

Rasnake M., Lacefield G., Miksch D., Bitzer M. Producing Summer Annual Grasses for Emergency or Supplemental Forage. University of Kentucky; Lexington, KY, USA: 1998. AGR–88.

Prasad T.N.V.K.V., Sudhakar P., Sreenivasulu Y., Latha P., Munaswamy V., Reddy K.R., Sreeprasad T.S., Sajanlal P.R., Pradeep T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant Nutr. 2012;35:905–927. doi: 10.1080/01904167.2012.663443. DOI

López-Vargas E., Ortega-Ortíz H., Cadenas-Pliego G., de Alba Romenus K., Cabrera de la Fuente M., Benavides-Mendoza A., Juárez-Maldonado A. Foliar application of copper nanoparticles increases the fruit quality and the content of bioactive compounds in tomatoes. Appl. Sci. 2018;8:1020. doi: 10.3390/app8071020. DOI

Yang F., Hong F., You W., Liu C., Gao F., Wu C., Yang P. Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006;110:179–190. doi: 10.1385/BTER:110:2:179. PubMed DOI

Bellesi F.J., Arata A.F., Martínez M., Arrigoni A.C., Stenglein S.A., Dinolfo M.I. Degradation of gluten proteins by Fusarium species and their impact on the grain quality of bread wheat. J. Stored Prod. Res. 2019;83:1–8. doi: 10.1016/j.jspr.2019.05.007. DOI

Wagner G., Korenkov V., Judy J., Bertsch P. Nanoparticles composed of Zn and ZnO inhibit Peronospora tabacina spore germination in vitro and P. tabacina infectivity on tobacco leaves. Nanomaterials. 2016;6:50. doi: 10.3390/nano6030050. PubMed DOI PMC

Gkanatsiou C., Ntalli N., Menkissoglu-Spiroudi U., Dendrinou-Samara C. Essential metal-based nanoparticles (copper/iron nps) as potent nematicidal agents against Meloidogyne spp. J. Nanotechnol. Res. 2019;2:043–057. doi: 10.26502/fjnr004. DOI

Sturikova H., Krystofova O., Huska D., Adam V. Zinc, zinc nanoparticles and plants. J. Hazard. Mater. 2018;349:101–110. doi: 10.1016/j.jhazmat.2018.01.040. PubMed DOI

Sabir S., Arshad M., Chaudhari S.K. Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications. Sci. World J. 2014;2014:1–8. doi: 10.1155/2014/925494. PubMed DOI PMC

Estrada-Urbina J., Cruz-Alonso A., Santander-González M., Méndez-Albores A., Vázquez-Durán A. Nanoscale zinc oxide particles for improving the physiological and sanitary quality of a Mexican landrace of red maize. Nanomaterials. 2018;8:247. doi: 10.3390/nano8040247. PubMed DOI PMC

Mousavi Kouhi S.M., Lahouti M., Ganjeali A., Entezari M.H. Comparative phytotoxicity of ZnO nanoparticles, ZnO microparticles, and Zn2+ on rapeseed (Brassica napus L.): Investigating a wide range of concentrations. Toxicol. Environ. Chem. 2014;96:861–868. doi: 10.1080/02772248.2014.994517. DOI

Schmidt M., Horstmann S., De Colli L., Danaher M., Speer K., Zannini E., Arendt E.K. Impact of fungal contamination of wheat on grain quality criteria. J. Cereal Sci. 2016;69:95–103. doi: 10.1016/j.jcs.2016.02.010. DOI

Matzen N., Ravn Jørgensen J., Holst N., Nistrup Jørgensen L. Grain quality in wheat—Impact of disease management. Eur. J. Agron. 2019;103:152–164. doi: 10.1016/j.eja.2018.12.007. DOI

Nandhini M., Rajini S.B., Udayashankar A.C., Niranjana S.R., Lund O.S., Shetty H.S., Prakash H.S. Biofabricated zinc oxide nanoparticles as an eco-friendly alternative for growth promotion and management of downy mildew of pearl millet. Crop Prot. 2019;121:103–112. doi: 10.1016/j.cropro.2019.03.015. DOI

Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., Zia ur Rehman M., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere. 2019;214:269–277. doi: 10.1016/j.chemosphere.2018.09.120. PubMed DOI

Rizwan M., Ali S., Zia ur Rehman M., Adrees M., Arshad M., Qayyum M.F., Ali L., Hussain A., Chatha S.A.S., Imran M. Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environ. Pollut. 2019;248:358–367. doi: 10.1016/j.envpol.2019.02.031. PubMed DOI

Xiang L., Zhao H.-M., Li Y.-W., Huang X.-P., Wu X.-L., Zhai T., Yuan Y., Cai Q.-Y., Mo C.-H. Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ. Sci. Pollut. Res. 2015;22:10452–10462. doi: 10.1007/s11356-015-4172-9. PubMed DOI

Čurlík J., Šefčík P. Slovak-Ministry for the Environ. MŽP. Soil Science and Conservation Research Institute (SSCRI); Bratislava, Slovakia: 1999. Geochemical atlas of the Slovak Republic. Part V Soils; p. 99.

Tian B., Luan S., Zhang L., Liu Y., Zhang L., Li H. Penalties in yield and yield associated traits caused by stem lodging at different developmental stages in summer and spring foxtail millet cultivars. Field Crops Res. 2018;217:104–112. doi: 10.1016/j.fcr.2017.12.013. DOI

Duflo E., Banerjee A. Handbook of Field Experiments. 1st ed. Elsevier; Amsterdam, The Netherlands: 2017.

Chisi M., Peterson G. Sorghum and Millets. Elsevier; Amsterdam, The Netherlands: 2019. Breeding and Agronomy; pp. 23–50.

Choudhary M., Rana K.S., Bana R.S., Ghasal P.C., Choudhary G.L., Jakhar P., Verma R.K. Energy budgeting and carbon footprint of pearl millet—Mustard cropping system under conventional and conservation agriculture in rainfed semi-arid agro-ecosystem. Energy. 2017;141:1052–1058. doi: 10.1016/j.energy.2017.09.136. DOI

Hrivňáková K., Makovníková J., Barančíková G., Bezák P., Bezáková Z., Dodok R., Grečo V., Chlpík J., Kobza J., Lištjak M., et al. The Uniform Methods of Soil Analysis. VÚPOP; Bratislava, Slovakia: 2011. p. 136.

Šinkovičová M., Igaz D., Kondrlová E., Jarošová M. Soil particle size analysis by laser diffractometry: Result comparison with pipette method. IOP Conf. Ser. Mater. Sci. Eng. 2017;245:072025. doi: 10.1088/1757-899X/245/7/072025. DOI

Kondrlova E., Igaz D., Horak J. Effect of calculation models on particle size distribution estimated by laser diffraction. J. Ege Univ. Fac. Agric. Spec. Issue. 2015:21–27.

Kováčik P., Wiśniowska-Kielian B., Smoleń S. Effect of application of Mg-tytanit stimulator on winter wheat yielding and quantitative parameters of wheat straw and grain. J. Elem. 2018;23:697–708.

Lindsay W.L., Norvell W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978;42:421–428. doi: 10.2136/sssaj1978.03615995004200030009x. DOI

Burghardt M., Schreiber L., Riederer M. Enhancement of the diffusion of active ingredients in barley leaf cuticular wax by monodisperse alcohol ethoxylates. J. Agric. Food Chem. 1998;46:1593–1602. doi: 10.1021/jf970737g. DOI

Räsch A., Hunsche M., Mail M., Burkhardt J., Noga G., Pariyar S. Agricultural adjuvants may impair leaf transpiration and photosynthetic activity. Plant Physiol. Biochem. 2018;132:229–237. doi: 10.1016/j.plaphy.2018.08.042. PubMed DOI

Meier U. Growth Stages of Mono-and Dicotyledonous Plants. Blackwell Wissenschafts-Verlag; Berlin, Germany: 1997.

Shahidi F. Extraction and measurement of total lipids. Curr. Protoc. Food Anal. Chem. 2003;7 doi: 10.1002/0471142913.fad0101s07. DOI

Dvořáček V., Bradová J., Sedláček T., Šárka E. Relationships among Mixolab rheological properties of isolated starch and white flour and quality of baking products using different wheat cultivars. J. Cereal Sci. 2019;89:102801. doi: 10.1016/j.jcs.2019.102801. DOI

Jones H.G., Serraj R., Loveys B.R., Xiong L., Wheaton A., Price A.H. Thermal infrared imaging of crop canopies for the remote diagnosis and quantification of plant responses to water stress in the field. Funct. Plant Biol. 2009;36:978–989. doi: 10.1071/FP09123. PubMed DOI

Kovár M., Černý I., Ernst D. Analysis of relations between crop temperature indices and yield of different sunflower hybrids foliar treated by biopreparations. Agriculture (Polnohospodárstvo) 2016;62:28–40. doi: 10.1515/agri-2016-0004. DOI

Kirnak H., Irik H.A., Unlukara A. Potential use of crop water stress index (CWSI) in irrigation scheduling of drip-irrigated seed pumpkin plants with different irrigation levels. Sci. Hortic. 2019;256:108608. doi: 10.1016/j.scienta.2019.108608. DOI

Idso S.B., Jackson R.D., Pinter P.J., Reginato R.J., Hatfield J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981;24:45–55. doi: 10.1016/0002-1571(81)90032-7. DOI

Archana B., Manjunath K., Nagaraju G., Chandra Sekhar K.B., Kottam N. Enhanced photocatalytic hydrogen generation and photostability of ZnO nanoparticles obtained via green synthesis. Int. J. Hydrogen Energy. 2017;42:5125–5131. doi: 10.1016/j.ijhydene.2016.11.099. DOI

Drissi S., Houssa A.A., Bamouh A., Benbella M. Corn silage (Zea mays L.) response to zinc foliar spray concentration when grown on sandy soil. J. Agric. Sci. 2015;7:68–79. doi: 10.5539/jas.v7n2p68. DOI

Torabian S., Zahedi M., Khoshgoftar A.H. Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J. Plant Nutr. 2016;39:172–180. doi: 10.1080/01904167.2015.1009107. DOI

Singh J., Kumar S., Alok A., Upadhyay S.K., Rawat M., Tsang D.C.W., Bolan N., Kim K.-H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J. Clean. Prod. 2019;214:1061–1070. doi: 10.1016/j.jclepro.2019.01.018. DOI

Food and Agriculture Organization of the United Nations . Sorghum and Millets in Human Nutrition. FAO; Rome, Italy: 1995. (Food and Nutrition Series)

Mitchell M., Pritchard J., Okada S., Larroque O., Yulia D., Pettolino F., Szydlowski N., Singh S., Liu Q., Ral J.-P. Oil accumulation in transgenic potato tubers alters starch quality and nutritional profile. Front. Plant Sci. 2017;8:554. doi: 10.3389/fpls.2017.00554. PubMed DOI PMC

Raigond P., Raigond B., Kaundal B., Singh B., Joshi A., Dutt S. Effect of zinc nanoparticles on antioxidative system of potato plants. J. Environ. Biol. 2017;38:435–439. doi: 10.22438/jeb/38/3/MS-209. DOI

Zhang Q., Chen J.M., Ju W., Wang H., Qiu F., Yang F., Fan W., Huang Q., Wang Y.-P., Feng Y., et al. Improving the ability of the photochemical reflectance index to track canopy light use efficiency through differentiating sunlit and shaded leaves. Remote Sens. Environ. 2017;194:1–15. doi: 10.1016/j.rse.2017.03.012. DOI

Taghvaeian S., Comas L., DeJonge K.C., Trout T.J. Conventional and simplified canopy temperature indices predict water stress in sunflower. Agric. Water Manag. 2014;144:69–80. doi: 10.1016/j.agwat.2014.06.003. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Enhancing Maize Yield and Quality with Metal-Based Nanoparticles without Translocation Risks: A Brief Field Study

. 2024 Jul 14 ; 13 (14) : . [epub] 20240714

Agronomic Investigation of Spray Dispersion of Metal-Based Nanoparticles on Sunflowers in Real-World Environments

. 2023 Apr 27 ; 12 (9) : . [epub] 20230427

Interaction of the Nanoparticles and Plants in Selective Growth Stages-Usual Effects and Resulting Impact on Usage Perspectives

. 2022 Sep 15 ; 11 (18) : . [epub] 20220915

Effects of Foliar Application of ZnO Nanoparticles on Lentil Production, Stress Level and Nutritional Seed Quality under Field Conditions

. 2022 Jan 18 ; 12 (3) : . [epub] 20220118

Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review

. 2021 Jun 09 ; 11 (6) : . [epub] 20210609

Fungus Aspergillus niger Processes Exogenous Zinc Nanoparticles into a Biogenic Oxalate Mineral

. 2020 Oct 08 ; 6 (4) : . [epub] 20201008

Foliar Application of Low Concentrations of Titanium Dioxide and Zinc Oxide Nanoparticles to the Common Sunflower under Field Conditions

. 2020 Aug 18 ; 10 (8) : . [epub] 20200818

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...