Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
671881
Horizon 2020
PubMed
34207693
PubMed Central
PMC8230276
DOI
10.3390/nano11061528
PII: nano11061528
Knihovny.cz E-zdroje
- Klíčová slova
- NPs testing, environmental models, human cells, innate immunity, markers,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
AvantiCell Science Ltd Ayr KA6 5HW UK
Center for Plant Molecular Biology ZMBP Eberhard Karls University Tübingen 72076 Tübingen Germany
Department of Biology Biotechnical Faculty University of Liubljana 1000 Ljubljana Slovenia
Department of Biosciences Paris Lodron University Salzburg 5020 Salzburg Austria
Department of Earth Environment and Life Sciences University of Genova 16126 Genova Italy
Institut Català de Nanosciència i Nanotecnologia Bellaterra 08193 Barcelona Spain
Institute for Biomedical Research and Innovation National Research Council 90146 Palermo Italy
Institute of Biochemistry and Cell Biology National Research Council 80131 Napoli Italy
Institute of Microbiology of the Czech Academy of Sciences 142 20 Prague Czech Republic
School of Biosciences Cardiff University Cardiff CF10 3AX UK
Zobrazit více v PubMed
Casals E., Gonzalez E., Puntes V.F. Reactivity of Inorganic Nanoparticles in Biological Environments: Insights into Nanotoxicity Mechanisms. J. Phys. D Appl. Phys. 2012;45:443001. doi: 10.1088/0022-3727/45/44/443001. DOI
Aitken R.J., Chaudhry M.Q., Boxall A.B.A., Hull M. Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends. Occup. Med. 2006;56:300–306. doi: 10.1093/occmed/kql051. PubMed DOI
Maynard A.D., Aitken R.J., Butz T., Colvin V., Donaldson K., Oberdorster G., Philbert M.A., Ryan J., Seaton A., Stone V. Safe Handling of Nanotechnology. Nature. 2006;444:267–269. doi: 10.1038/444267a. PubMed DOI
Schmid K., Riediker M. Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environ. Sci. Technol. 2008;42:2253–2260. doi: 10.1021/es071818o. PubMed DOI
Bogart L.K., Pourroy G., Murphy C.J., Puntes V., Pellegrino T., Rosenblum D., Peer D. Nanoparticles for Imaging, Sensing, and Therapeutic Intervention. ACS Nano. 2014;8:16. doi: 10.1021/nn500962q. PubMed DOI PMC
Pulit-Prociak J., Banach M. Silver Nanoparticles—A Material of the Future…? Open Chem. 2016;14 doi: 10.1515/chem-2016-0005. DOI
Boraschi D. From Antigen Delivery System to Adjuvanticy: The Board Application of Nanoparticles in Vaccinology. Vaccines. 2015;10:930–939. doi: 10.3390/vaccines3040930. PubMed DOI PMC
Lehner R. Intelligent Nanomaterials for Medicine: Carrier Platforms and Targeting Strategies in the Context of Clinical Application. Nanomedicine. 2013;16:742–757. doi: 10.1016/j.nano.2013.01.012. PubMed DOI
Boraschi D. Interaction of Engineered Nanomaterials with the Immune System: Health-Related Safety and Possible Benefits. Curr. Opin. Toxicol. 2018;10:74–83. doi: 10.1016/j.cotox.2018.02.002. DOI
Moghimi S.M., Hunter A.C., Murray J.C. Nanomedicine: Current Status and Future Prospects. FASEB J. 2005;19:311–330. doi: 10.1096/fj.04-2747rev. PubMed DOI
Nel A., Xia T. Toxic Potential of Materials at the Nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI
Dobrovolskaia M., McNeil S. Immunological Properties of Engineered Nanomaterials. Nat. Nanotechnol. 2007;2:10. doi: 10.1038/nnano.2007.223. PubMed DOI
Fadeel B., Garcia-Bennett A.E. Better Safe than Sorry: Understanding the Toxicological Properties of Inorganic Nanoparticles Manufactured for Biomedical Applications. Adv. Drug Deliv. Rev. 2010;13:362–374. doi: 10.1016/j.addr.2009.11.008. PubMed DOI
Jiang Z., Jacob J.A., Li J., Wu X., Wei G., Vimalanathan A., Mani R., Nainangu P., Rajadurai U.M., Chen B. Influence of Diet and Dietary Nanoparticles on Gut Dysbiosis. Microb. Pathog. 2018;118:61–65. doi: 10.1016/j.micpath.2018.03.017. PubMed DOI
Spurgeon D.J., Lahive E., Schultz C.L. Nanomaterial Transformations in the Environment: Effects of Changing Exposure Forms on Bioaccumulation and Toxicity. Small. 2020;16 doi: 10.1002/smll.202000618. PubMed DOI
Mittal D., Kaur G., Singh P., Yadav K., Ali S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020;2:579954. doi: 10.3389/fnano.2020.579954. DOI
Bundschuh M. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018;30:6. doi: 10.1186/s12302-018-0132-6. PubMed DOI PMC
Graca B., Zgrundo A., Zakrzewska D., Rzodkiewicz M., Karczewski J. Origin and Fate of Nanoparticles in Marine Water-Preliminary Results. Chemosphere. 2018;206:359–368. doi: 10.1016/j.chemosphere.2018.05.022. PubMed DOI
Gottschalk F., Lassen C., Kjoelholt J., Christensen F., Nowack B. Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment. Int. J. Environ. Res. Public Health. 2015;12:5581–5602. doi: 10.3390/ijerph120505581. PubMed DOI PMC
Rocha T.L., Gomes T., Sousa V.S., Mestre N.C., Bebianno M.J. Ecotoxicological Impact of Engineered Nanomaterials in Bivalve Molluscs: An Overview. Mar. Environ. Res. 2015;111:74–88. doi: 10.1016/j.marenvres.2015.06.013. PubMed DOI
Boraschi D., Alijagic A., Auguste M., Barbero F., Ferrari E., Hernadi S., Mayall C., Michelini S., Pacheco N.I.N., Prinelli A., et al. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small. 2020;16 doi: 10.1002/smll.202000598. PubMed DOI
Swartzwelter B.J., Fux A.C., Johnson L., Swart E., Hofer S., Hofstätter N., Geppert M., Italiani P., Boraschi D., Duschl A., et al. The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. Int. J. Mol. Sci. 2020;23:9695. doi: 10.3390/ijms21249695. PubMed DOI PMC
Boraschi D., Duschl A. Nanoparticles and the Immune System: Safety and Effects. Elsevier/AP; Amsterdam, The Netherlands: 2014.
Mitchell-Olds T. Arabidopsis Thaliana and Its Wild Relatives: A Model System for Ecology and Evolution. Trends Ecol. Evol. 2001;16 doi: 10.1016/S0169-5347(01)02291-1. DOI
Bevan M., Walsh S. The Arabidopsis Genome: A Foundation for Plant Research. Genome Res. 2005;15:1632–1642. doi: 10.1101/gr.3723405. PubMed DOI
The Arabidopsis Genome Iniative Analysis of the Genome Sequence of the Flowering Plant Arabidopsis Thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI
OECD . Test No 222. Earthworm Reproduction Test (Eisenia Fetida/ Eisenia Andrei) OECD; Paris, France: 2016.
Edwards C.A., Bohlen P.J. Biology and Ecology of Earthworms. Chapman&Hall; London, UK: 1996.
Van Gestel C.A.M., Loureiro S., Zidar P. Terrestrial Isopods as Model Organisms in Soil Ecotoxicology: A Review. Zookeys. 2018;801:127–162. doi: 10.3897/zookeys.801.21970. PubMed DOI PMC
Malev O. Effects of CeO2 Nanoparticles on Terrestrial Isopod Porcellio Scaber: Comparison of CeO2 Biological Potential with Other Nanoparticles. Arch. Environ. Contam. Toxicol. 2017;72:303–311. doi: 10.1007/s00244-017-0363-3. PubMed DOI
Novak S., Romih T., Dra B., Ferraris P., Sorieul S., Zieba M., Sebastian V., Arruebo M., Ho S.B. The in Vivo Effects of Silver Nanoparticles on Terrestrial Isopods, Porcellio Scaber, Depend on a Dynamic Interplay between Shape, Size and Nanoparticle Dissolution Properties. Analyst. 2019;2 doi: 10.1039/C8AN01387J. PubMed DOI
Beyer J., Green N.W., Brooks S., Allan I.J., Ruus A., Gomes T., Bråte I.L.N., Schøyen M. Blue Mussels (Mytilus Edulis spp.) as Sentinel Organisms in Coastal Pollution Monitoring: A Review. Mar. Environ. Res. 2017;130:338–365. doi: 10.1016/j.marenvres.2017.07.024. PubMed DOI
Fernández Robledo J.A., Yadavalli R., Allam B., Pales Espinosa E., Gerdol M., Greco S., Stevick R.J., Gómez-Chiarri M., Zhang Y., Heil C.A., et al. From the Raw Bar to the Bench: Bivalves as Models for Human Health. Dev. Comp. Immunol. 2019;92:260–282. doi: 10.1016/j.dci.2018.11.020. PubMed DOI PMC
Chou H.-Y., Lun C.M., Smith L.C. SpTransformer Proteins from the Purple Sea Urchin Opsonize Bacteria, Augment Phagocytosis, and Retard Bacterial Growth. PLoS ONE. 2018;13:e0196890. doi: 10.1371/journal.pone.0196890. PubMed DOI PMC
Pandora-H2020. [(accessed on 16 February 2021)]; Available online: https://www.Pandora-H2020.Eu/
Pinsino A., Bastús N.G., Busquets-Fité M., Canesi L., Cesaroni P., Drobne D., Duschl A., Ewart M.-A., Gispert I., Horejs-Hoeck J., et al. Probing the Immune Responses to Nanoparticles across Environmental Species. A Perspective of the EU Horizon 2020 Project PANDORA. Environ. Sci. Nano. 2020;7:3216–3232. doi: 10.1039/D0EN00732C. DOI
Soderhall K. Invertebrate Immunity. Advances in Experimental Medicine and Biology. Landes Bioscience and Springer Science+Business Media, LLC; New York, NY, USA: 2010. PubMed
Canesi L., Procházková P. The Invertebrate Immune System as a Model for Investigating the Environmental Impact of Nanoparticles. In: Boraschi D., Duschl A., editors. Nanoparticles and the Immune System Safety and Effects. Academic Press; Cambridge, MA, USA: 2014. pp. 91–112.
Jones J.D.G., Dangl J.L. The Plant Immune System. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI
Takeuchi O., Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI
Sarma J.V., Ward P.E. The Complement System. Cell Tissue Res. 2011;343:227–235. doi: 10.1007/s00441-010-1034-0. PubMed DOI PMC
Bilej M., Baetselier P.D., Dijck E.V., Stijlemans B., Colige A., Beschin A. Distinct Carbohydrate Recognition Domains of an Invertebrate Defense Molecule Recognize Gram-Negative and Gram-Positive Bacteria. J. Biol. Chem. 2001;276:45840–45847. doi: 10.1074/jbc.M107220200. PubMed DOI
Soderhall K., Cerenius L. Role of the Prophenoloxidase-Activating System in Invertebrate Immunity. Curr. Opin. Immunol. 1998;10:23–28. doi: 10.1016/S0952-7915(98)80026-5. PubMed DOI
Jaenicke E., Fraune S., May S., Irmak P., Augustin R., Meesters C., Decker H., Zimmer M. Is Activated Hemocyanin Instead of Phenoloxidase Involved in Immune Response in Woodlice? Dev. Comp. Immunol. 2009;33:1055–1063. doi: 10.1016/j.dci.2009.05.005. PubMed DOI
Motion G.B., Huitema E. Nuclear Processes Associated with Plant Immunity and Pathogen Susceptibility. Brief Funct. Genom. 2015;14:243–252. doi: 10.1093/bfgp/elv013. PubMed DOI PMC
Coll N., Epple P., Dangl J. Programmed Cell Death in the Plant Immune System. Cell Death Differ. 2011;18:1247–1256. doi: 10.1038/cdd.2011.37. PubMed DOI PMC
Newman M.-A. MAMP (Microbe-Associated Molecular Pattern) Triggered Immunity in Plants. Front. Plant Sci. 2013;4:139. doi: 10.3389/fpls.2013.00139. PubMed DOI PMC
Miescher-Institut F., Box P.O. FLS2: An LRR Receptor–like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Mol. Cell. 2000;5:1003–1011. PubMed
Boutrot F., Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annu. Rev. Phytopathol. 2017;55:257–286. doi: 10.1146/annurev-phyto-080614-120106. PubMed DOI
Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the Plant Immune System from Dissection to Deployment. Science. 2013;14 doi: 10.1126/science.1236011. PubMed DOI PMC
Gust A.A., Pruitt R., Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. Trends Plant Sci. 2017;22:779–791. doi: 10.1016/j.tplants.2017.07.005. PubMed DOI
Sukarta O.C.A. Structure-Informed Insights for NLR Functioning in Plant Immunity. Semin. Cell Dev. Biol. 2016;56:134–149. doi: 10.1016/j.semcdb.2016.05.012. PubMed DOI
Thomma B.P.H.J., Nürnberger T., Joosten M.H.A.J. Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant. Cell. 2011;23:4–15. doi: 10.1105/tpc.110.082602. PubMed DOI PMC
Tao Y., Xie Z., Chen W., Glazebrook J., Chang H.-S., Han B., Zhu T., Zou G., Katagiri F. Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas Syringae. Plant Cell. 2003;15:317–330. doi: 10.1105/tpc.007591. PubMed DOI PMC
Bigeard J. Signaling Mechanisms in Pattern-Triggered Immunity (PTI) Mol. Plant. 2015;8:521–539. doi: 10.1016/j.molp.2014.12.022. PubMed DOI
Chagas F.O., Pessotti R.D.C., Caraballo-Rodrıguez A.M., Pupo M.T. Chemical Signaling Involved in Plant–Microbe Interactions. Chem. Soc. Rev. 2018;47:1652–1704. doi: 10.1039/C7CS00343A. PubMed DOI
Halim V.A., Vess A., Scheel D., Rosahl S. The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defence. Plant Biol. 2006;8:307–313. doi: 10.1055/s-2006-924025. PubMed DOI
Kachroo P., Kachroo A. The Roles of Salicylic Acid and Jasmonic Acid in Plant Immunity. In: Sessa G., editor. Molecular Plant Immunity. Wiley-Blackwell; Oxford, UK: 2012. pp. 55–79.
Bilej M., Procházková P., Silerova M., Joskova R. Invertebrate Immunity. Landes Bioscience and Springer Science; New York, NY, USA: 2010. Earthworm immunity; pp. 66–79. PubMed
Cooper E.L., Kauschke E., Cossarizza A. Digging for Innate Immunity since Darwin and Metchnikoff. BioEssays. 2002;24:319–333. doi: 10.1002/bies.10077. PubMed DOI
Molnár L. Cold-Stress Induced Formation of Calcium and Phosphorous Rich Chloragocyte Granules (Chloragosomes) in the Earthworm Eisenia Fetida. Comp. Biochem. Physiol. 2012;11:199–209. doi: 10.1016/j.cbpa.2012.06.005. PubMed DOI
Beschin A., Bilej M., Hanssens F., Raymakers J., Dyck E.V., Revets H., Brys L., Gomez J., Baetselier P.D., Timmermans M. Identification and Cloning of a Glucan- and Lipopolysaccharide- Binding Protein from Eisenia Foetida Earthworm Involved in the Activation of Prophenoloxidase Cascade. J. Biol. Chem. 1998;273:24948–24954. doi: 10.1074/jbc.273.38.24948. PubMed DOI
Škanta F., Roubalová R., Dvořák J., Procházková P., Bilej M. Molecular Cloning and Expression of TLR in the Eisenia Andrei Earthworm. Dev. Comp. Immunol. 2013;41:694–702. doi: 10.1016/j.dci.2013.08.009. PubMed DOI
Škanta F. LBP/BPI Homologue in Eisenia Andrei Earthworms. Dev. Comp. Immunol. 2016;54:1–6. doi: 10.1016/j.dci.2015.08.008. PubMed DOI
Silerova M., Prochazkova P., Joskova R., Josens G., Beschin A., De Baetselier P., Bilej M. Comparative Study of the CCF-like Pattern Recognition Protein in Different Lumbricid Species. Dev. Comp. Immunol. 2006;30:765–771. doi: 10.1016/j.dci.2005.11.002. PubMed DOI
Cotuk A., Dales R.P. Lyzomyme Activity in the Coelomic Fluid and Coelomocytes of the Earthworm Eisenia Foetida Sav. in Relation to Bacterial Infection. Comp. Biochem. Physiol. 1984;78A:469–474. doi: 10.1016/0300-9629(84)90580-2. DOI
Joskova R., Šilerová M. Identification and Cloning of an Invertebrate-Type Lysozyme from Eisenia Andrei. Dev. Comp. Immunol. 2009;33:932–938. doi: 10.1016/j.dci.2009.03.002. PubMed DOI
Lassegues M., Milochau’ A., Doignon F., Pasquier L.D., Valembois P. Sequence and Expression of an Eisenia-Fetida-Derived CDNA Clone That Encodes the 40-KDa Fetidin Antibacterial Protein. JBIC J. Biol. Inorg. Chem. 1997;246:756–762. PubMed
Sekizawa Y., Hagiwara K., Nakajima T., Kobayashi H. A Novel Protein, Lysenin, That Causes Contraction of the Isolated Rat Aorta: Its Purification from the Coelomic Fluid of the Earthworm Eisenia Foetida. Biomed. Res. 1996;17:197–203. doi: 10.2220/biomedres.17.197. DOI
Chevalier F., Herbinière-Gaboreau J., Bertaux J., Raimond M., Morel F., Bouchon D., Grève P., Braquart-Varnier C. The Immune Cellular Effectors of Terrestrial Isopod Armadillidium Vulgare: Meeting with Their Invaders, Wolbachia. PLoS ONE. 2011;6:e18531. doi: 10.1371/journal.pone.0018531. PubMed DOI PMC
Kostanjšek R. Pathogenesis, Tissue Distribution and Host Response to Rhabdochlamydia Porcellionis Infection in Rough Woodlouse Porcellio Scaber. J. Invertebr. Pathol. 2015;125:56–67. doi: 10.1016/j.jip.2015.01.001. PubMed DOI
Liu H. Phenoloxidase Is an Important Component of the Defense against Aeromonas Hydrophila Infection in a Crustacean, Pacifastacus Leniusculus. J. Biol. Chem. 2007;282:33593–33598. doi: 10.1074/jbc.M706113200. PubMed DOI
Zhou Y. Ginger Extract Extends the Lifespan of Drosophila Melanogaster through Antioxidation and Ameliorating Metabolic Dysfunction. J. Funct. Foods. 2018;49:295–305. doi: 10.1016/j.jff.2018.08.040. DOI
Jiravanichpaisal P., Lee B.L., Söderhäll K. Cell-Mediated Immunity in Arthropods: Hematopoiesis, Coagulation, Melanization and Opsonization. Immunobiology. 2006;211:213–236. doi: 10.1016/j.imbio.2005.10.015. PubMed DOI
Yeh F.-C., Wu S.-H., Lai C.-Y., Lee C.-Y. Demonstration of Nitric Oxide Synthase Activity in Crustacean Hemocytes and Anti-Microbial Activity of Hemocyte-Derived Nitric Oxide. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006;144:11–17. doi: 10.1016/j.cbpb.2006.01.007. PubMed DOI
Rosa R., Barracco M. Antimicrobial Peptides in Crustaceans. Invert. Surviv. J. 2010;7:262–284.
Chevalier F., Herbinière-Gaboreau J., Charif D., Mitta G., Gavory F., Wincker P., Grève P., Braquart-Varnier C., Bouchon D. Feminizing Wolbachia: A Transcriptomics Approach with Insights on the Immune Response Genes in Armadillidium Vulgare. BMC Microbiol. 2012;12:S1. doi: 10.1186/1471-2180-12-S1-S1. PubMed DOI PMC
Canesi L., Pruzzo C. Specificity of Innate Immunity in bivalves: A Lesson From Bacteria. In: Ballarin L., Cammarata M., editors. Lessons in Immunity: From Single-Cell Organisms to Mammals. Academic Press; Cambridge, MA, USA: 2016. pp. 79–92.
Gerdol. M., Gomez-Chiari M., Castillo M.G., Figueras A., Fiorito G., Moreira R., Novoa B., Pallavicini A., Ponte G., Roumbedakis K., et al. Immunity in Molluscs: Recognition and Effector Mechanisms, with a Focus on Bivalvia. In: Cooper E., editor. Advances in Comparative Immunology. Springer; Berlin/Heidelberg, Germany: 2018. pp. 225–342.
Pezzati E., Canesi L., Damonte G., Salis A., Marsano F., Grande C., Vezzulli L., Pruzzo C. Susceptibility of V Ibrio Aestuarianu s 01/032 to the Antibacterial Activity of M Ytilus Haemolymph: Identification of a Serum Opsonin Involved in Mannose-Sensitive Interactions: Vibrio Aestuarianus and Bivalve Haemocytes. Environ. Microbiol. 2015;17:4271–4279. doi: 10.1111/1462-2920.12750. PubMed DOI
Song L., Wang L., Qiu L., Zhang H. Invertebrate Immunity. Landes Bioscience and Springer Science; New York, NY, USA: 2010. Bivalve immunity.
Allam B., Raftos D. Immune Responses to Infectious Diseases in Bivalves. J. Invertebr. Pathol. 2015;131:121–136. doi: 10.1016/j.jip.2015.05.005. PubMed DOI
Luna-Acosta A., Breitwieser M., Renault T., Thomas-Guyon H. Recent Findings on Phenoloxidases in Bivalves. Mar. Pollut. Bull. 2017;122:5–16. doi: 10.1016/j.marpolbul.2017.06.031. PubMed DOI
Pinsino A. Sea Urchin Immune Cells as Sentinels of Environmental Stress. Dev. Comp. Immunol. 2015;49:198–205. doi: 10.1016/j.dci.2014.11.013. PubMed DOI
Smith L.C., Arizza V., Hudgell M.A.B., Barone G., Bodnar A.G., Buckley K.M., Cunsolo V., Dheilly N.M., Franchi N., Fugmann S.D., et al. Echinodermata: The complex immune system in echinoderms. In: Cooper E.L., editor. Advances in Comparative Immunology. Springer International Publishing AG; New York, NY, USA: 2018. pp. 409–501.
Sea Urchin Genome Sequencing Consortium The Genome of the Sea Urchin Strongylocentrotus Purpuratus. Science. 2006;10:941–952. doi: 10.1126/science.1133609. PubMed DOI PMC
Rast J.P., Smith L.C., Loza-Coll M., Hibino T., Litman G.W. Genomic Insights into the Immune System of the Sea Urchin. Science. 2006;314:952–956. doi: 10.1126/science.1134301. PubMed DOI PMC
Lessons in Immunity: From Single Cell Organisms to Mammals. Academic Press; Cambridge, MA, USA: Elsevier Inc.; Amsterdam, The Netherlands: 2016. Echinoderm Antimicrobial peptides: The ancient arms of the Deuterostome inna immune system; pp. 145–153.
Schillaci D., Arizza V., Parrinello N., Di Stefano V., Fanara S., Muccilli V., Cunsolo V., Haagensen J.J.A., Molin S. Antimicrobial and Antistaphylococcal Biofilm Activity from the Sea Urchin Paracentrotus Lividus: Antimicrobial and Antistaphylococcal Biofilm Activity. J. Appl. Microbiol. 2010;108:17–24. doi: 10.1111/j.1365-2672.2009.04394.x. PubMed DOI
Alijagic A. Gold Nanoparticles Coated with Polyvinylpyrrolidone and Sea Urchin Extracellular Molecules Induce Transient Immune Activation. J. Hazard. Mater. 2021;402:123793. doi: 10.1016/j.jhazmat.2020.123793. PubMed DOI
Liu M.-C., Liao W.-Y., Buckley K.M., Yang S.Y., Rast J.P., Fugmann S.D. AID/APOBEC-like Cytidine Deaminases Are Ancient Innate Immune Mediators in Invertebrates. Nat. Commun. 2018;9:1948. doi: 10.1038/s41467-018-04273-x. PubMed DOI PMC
Chernecky C.C., Berger B.J. Laboratory Tests and Diagnostic Procedures-E-Book. Elsevier Health Science; St. Louis, MO, USA: 2012.
Tsou C.-L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical Roles for CCR2 and MCP-3 in Monocyte Mobilization from Bone Marrow and Recruitment to Inflammatory Sites. J. Clin. Investig. 2007;117:902–909. doi: 10.1172/JCI29919. PubMed DOI PMC
Italiani P. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014;5:514. doi: 10.3389/fimmu.2014.00514. PubMed DOI PMC
Bain C.C., Bravo-Blas A., Scott C.L., Perdiguero E.G., Geissmann F., Henri S., Malissen B., Osborne L.C., Mowat A.M. Constant Replenishment from Circulating Monocytes Maintains the Macrophage Pool in Adult Intestine. Nat. Immunol. 2014;15:929–937. doi: 10.1038/ni.2967. PubMed DOI PMC
Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI
Mosser D.M., Edwards J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008;8:958–969. doi: 10.1038/nri2448. PubMed DOI PMC
Hoppstädter J., Seif M., Dembek A., Cavelius C., Huwer H., Kraegeloh A., Kiemer A.K. M2 Polarization Enhances Silica Nanoparticle Uptake by Macrophages. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00055. PubMed DOI PMC
Medzhitov R., Preston-Hurlburt P., Janewayr C.A. A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity. Nat. Cell Biol. 1997;388:4. doi: 10.1038/41131. PubMed DOI
Diebold S.S., Kaisho T., Hemmi H., Akira S. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science. 2004;303:4. doi: 10.1126/science.1093616. PubMed DOI
Peiser L., Mukhopadhyay S., Gordon S. Scavenger Receptors in Innate Immunity. Curr. Opin. Immunol. 2002;14:123–128. doi: 10.1016/S0952-7915(01)00307-7. PubMed DOI
Brown G.D., Taylor P.R., Reid D.M., Willment J.A., Williams D.L., Martinez-Pomares L., Wong S.Y.C., Gordon S. Dectin-1 Is A Major β-Glucan Receptor On Macrophages. J. Exp. Med. 2002;196:407–412. doi: 10.1084/jem.20020470. PubMed DOI PMC
Davis B.K., Wen H., Ting J.P.-Y. The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annu. Rev. Immunol. 2011;29:707–735. doi: 10.1146/annurev-immunol-031210-101405. PubMed DOI PMC
Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., et al. Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nat. Cell Biol. 2006;441:101–105. doi: 10.1038/nature04734. PubMed DOI
Martinon F. NLRs Join TLRs as Innate Sensors of Pathogens. Trends Immunol. 2005;26:447–454. doi: 10.1016/j.it.2005.06.004. PubMed DOI
Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D. Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small. 2005;1:325–327. doi: 10.1002/smll.200400093. PubMed DOI
Barbero F., Moriones O.H., Bastús N.G., Puntes V. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide–Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona. Bioconjugate Chem. 2019;30:2917–2930. doi: 10.1021/acs.bioconjchem.9b00624. PubMed DOI
Li Y., Boraschi D. Endotoxin Contamination: A Key Element in the Interpretation of Nanosafety Studies. Nanomedicine. 2016;11:269–287. doi: 10.2217/nnm.15.196. PubMed DOI
Treuel L., Docter D., Maskos M., Stauber R.H. Protein Corona-from Molecular Adsorption to Physiological Complexity. Beilstein J. Nanotechnol. 2015;6:857–873. doi: 10.3762/bjnano.6.88. PubMed DOI PMC
Fleischer C.C., Payne C.K. Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Acc. Chem. Res. 2014;47:2651–2659. doi: 10.1021/ar500190q. PubMed DOI PMC
Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts. Proc. Natl. Acad. Sci. USA. 2008;105:14265–14270. doi: 10.1073/pnas.0805135105. PubMed DOI PMC
Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V. Time Evolution of the Nanoparticle Protein Corona. ACS Nano. 2010;4:3623–3632. doi: 10.1021/nn901372t. PubMed DOI
Monopoli M.P., Walczyk D., Campbell A., Elia G., Lynch I., Baldelli Bombelli F., Dawson K.A. Physical−Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011;133:2525–2534. doi: 10.1021/ja107583h. PubMed DOI
Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R., Schlenk F., Fischer D., Kiouptsi K., Reinhardt C., et al. Rapid Formation of Plasma Protein Corona Critically Affects Nanoparticle Pathophysiology. Nat. Nanotech. 2013;8:772–781. doi: 10.1038/nnano.2013.181. PubMed DOI
Silvio D.D. Effect of Protein Corona Magnetite Nanoparticles Derived from Bread in Vitro Digestion on Caco-2 Cells Morphology and Uptake. Int. J. Biochem. 2016;75:212–222. doi: 10.1016/j.biocel.2015.10.019. PubMed DOI
Piella J., Bastús N.G., Puntes V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chem. 2017;28:88–97. doi: 10.1021/acs.bioconjchem.6b00575. PubMed DOI
Barbero F., Russo L., Vitali M., Piella J., Salvo I., Borrajo M.L., Busquets-Fité M., Grandori R., Bastús N.G., Casals E., et al. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Semin. Immunol. 2017;34:52–60. doi: 10.1016/j.smim.2017.10.001. PubMed DOI
Saha K., Rahimi M., Yazdani M., Kim S.T., Moyano D.F., Hou S., Das R., Mout R., Rezaee F., Mahmoudi M., et al. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano. 2016;10:4421–4430. doi: 10.1021/acsnano.6b00053. PubMed DOI PMC
Hayashi Y., Miclaus T., Scavenius C., Kwiatkowska K., Sobota A. Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environ. Sci. Technol. 2013;47:14367–14375. doi: 10.1021/es404132w. PubMed DOI
Canesi L., Balbi T., Fabbri R., Salis A., Damonte G., Volland M., Blasco J. Biomolecular Coronas in Invertebrate Species: Implications in the Environmental Impact of Nanoparticles. NanoImpact. 2017;8:89–98. doi: 10.1016/j.impact.2017.08.001. DOI
Marques-Santos L.F., Grassi G., Bergami E., Faleri C., Balbi T., Salis A., Damonte G., Canesi L., Corsi I. Cationic Polystyrene Nanoparticle and the Sea Urchin Immune System: Biocorona Formation, Cell Toxicity, and Multixenobiotic Resistance Phenotype. Nanotoxicology. 2018;12:847–867. doi: 10.1080/17435390.2018.1482378. PubMed DOI
Grassi G., Landi C., Della Torre C., Bergami E., Bini L., Corsi I. Proteomic Profile of the Hard Corona of Charged Polystyrene Nanoparticles Exposed to Sea Urchin Paracentrotus Lividus Coelomic Fluid Highlights Potential Drivers of Toxicity. Environ. Sci. Nano. 2019;6:2937–2947. doi: 10.1039/C9EN00824A. DOI
Mueller N.C., Nowack B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008;42:4447–4453. doi: 10.1021/es7029637. PubMed DOI
Nowack B. Nanosilver Revisited Downstream. Science. 2010;330:1054–1055. doi: 10.1126/science.1198074. PubMed DOI
Nowack B., Krug H.F., Height M. 120 Years of Nanosilver History: Implications for Policy Makers. Policy Anal. 2011;45:1177–1183. PubMed
Dale A.L., Casman E.A., Lowry G.V., Lead J.R., Viparelli E., Baalousha M. Modeling Nanomaterial Environmental Fate in Aquatic Systems. Environ. Sci. Technol. 2015;49:2587–2593. doi: 10.1021/es505076w. PubMed DOI
Nasser F., Constantinou J., Lynch I. Nanomaterials in the Environment Acquire an “Eco-Corona” Impacting Their Toxicity to Daphnia Magna—A Call for Updating Toxicity Testing Policies. Proteomics. 2020;20:1800412. doi: 10.1002/pmic.201800412. PubMed DOI
Saavedra J., Stoll S., Slaveykova V.I. Influence of Nanoplastic Surface Charge on Eco-Corona Formation, Aggregation and Toxicity to Freshwater Zooplankton. Environ. Pollut. 2019;252:715–722. doi: 10.1016/j.envpol.2019.05.135. PubMed DOI
Barbero F., Mayall C., Drobne D., Saiz-Poseu J., Bastús N.G., Puntes V. Formation and Evolution of the Nanoparticle Environmental Corona: The Case of Au and Humic Acid. Sci. Total Environ. 2021;768:144792. doi: 10.1016/j.scitotenv.2020.144792. PubMed DOI
Batley G.E., Kirby J.K., Mclaughlin M.J. Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts Chem. Res. 2013;46:854–862. doi: 10.1021/ar2003368. PubMed DOI
Nowack B., Rose J. Potential Scenarios for Nanomaterial Release and Subsequent Alteration in the Environment. Environ. Toxicol. Chem. 2011;31:50–59. doi: 10.1002/etc.726. PubMed DOI
Peijnenburg W.J.G.M., Baalousha M., Chen J., Chaudry Q., Von der kammer F., Kuhlbusch T.A.J., Lead J., Nickel C., Quik J.T.K., Renker M., et al. A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. Crit. Rev. Environ. Sci. Technol. 2015;45:2084–2134. doi: 10.1080/10643389.2015.1010430. DOI
Svendsen C., Spurgeon D.J., Hankard P.K., Weeks J.M. A Review of Lysosomal Membrane Stability Measured by Neutral Red Retention: Is It a Workable Earthworm Biomarker? Ecotoxicol. Environ. Saf. 2004;57:20–29. doi: 10.1016/j.ecoenv.2003.08.009. PubMed DOI
Eyambe G.S., Goven A.J., Fitzpatrick L.C., Venables B.J., Cooper E.L. A Non-Invasive Technique for Sequential Collection of Earthworm (Lumbricus Terrestris) Leukocytes during Subchronic Immunotoxicity Studies. Lab. Anim. 1991;25:61–67. doi: 10.1258/002367791780808095. PubMed DOI
Garcia-Velasco N. Selection of an Optimal Culture Medium and the Most Responsive Viability Assay to Assess AgNPs Toxicity with Primary Cultures of Eisenia Fetida Coelomocytes. Ecotoxicol. Environ. Saf. 2019;183:109545. doi: 10.1016/j.ecoenv.2019.109545. PubMed DOI
Yang Y., Xiao Y., Li M., Ji F., Hu C., Cui Y. Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS ONE. 2017;12:e0170092. doi: 10.1371/journal.pone.0170092. PubMed DOI PMC
Hayashi Y. Time-Course Profiling of Molecular Stress Responses to Silver Nanoparticles in the Earthworm Eisenia Fetida. Ecotoxicol. Environ. Saf. 2013;98:219–226. doi: 10.1016/j.ecoenv.2013.08.017. PubMed DOI
Semerad J., Pacheco N.I.N., Grasserova A., Prochazkova P., Pivokonsky M., Pivokonska L., Cajthaml T. In Vitro Study of the Toxicity Mechanisms of Nanoscale Zero-Valent Iron (NZVI) and Released Iron Ions Using Earthworm Cells. Nanomaterials. 2020;10:2189. doi: 10.3390/nano10112189. PubMed DOI PMC
Pacheco N.I.N., Roubalova R., Semerad J., Grasserova A., Benada O., Kofronova O., Cajthaml T., Dvorak J., Bilej M., Prochazkova P. In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. Nanomaterials. 2021;11:250. doi: 10.3390/nano11010250. PubMed DOI PMC
Swart E., Dvorak J., Hernádi S., Goodall T., Kille P., Spurgeon D., Svendsen C., Prochazkova P. The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. Nanomaterials. 2020;10:1337. doi: 10.3390/nano10071337. PubMed DOI PMC
Dolar A. Modulations of Immune Parameters Caused by Bacterial and Viral Infections in the Terrestrial Crustacean Porcellio Scaber: Implications for Potential Markers in Environmental Research. Dev. Comp. Immunol. 2020;113:103789. doi: 10.1016/j.dci.2020.103789. PubMed DOI
Canesi L., Ciacci C., Balbi T. Invertebrate Models for Investigating the Impact of Nanomaterials on Innate Immunity: The Example of the Marine Mussel Mytilus spp. CBNT. 2017;2:77–83. doi: 10.2174/2213529402666160601102529. DOI
Barrick A., Guillet C., Mouneyrac C., Châtel A. Investigating the Establishment of Primary Cultures of Hemocytes from Mytilus Edulis. Cytotechnology. 2018;70:1205–1220. doi: 10.1007/s10616-018-0212-x. PubMed DOI PMC
Katsumiti A., Tomovska R., Cajaraville M.P. Intracellular Localization and Toxicity of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets to Mussel Hemocytes in Vitro. Aquat. Toxicol. 2017;188:138–147. doi: 10.1016/j.aquatox.2017.04.016. PubMed DOI
Sendra M., Volland M., Balbi T., Fabbri R., Yeste M.P., Gatica J.M., Canesi L., Blasco J. Cytotoxicity of CeO2 Nanoparticles Using in Vitro Assay with Mytilus Galloprovincialis Hemocytes: Relevance of Zeta Potential, Shape and Biocorona Formation. Aquat. Toxicol. 2018;200:13–20. doi: 10.1016/j.aquatox.2018.04.011. PubMed DOI
Balbi T., Fabbri R., Montagna M., Camisassi G., Canesi L. Seasonal Variability of Different Biomarkers in Mussels (Mytilus Galloprovincialis) Farmed at Different Sites of the Gulf of La Spezia, Ligurian Sea, Italy. Mar. Pollut. Bull. 2017;116:348–356. doi: 10.1016/j.marpolbul.2017.01.035. PubMed DOI
Katsumiti A., Gilliland D., Arostegui I., Cajaraville M.P. Cytotoxicity and Cellular Mechanisms Involved in the Toxicity of CdS Quantum Dots in Hemocytes and Gill Cells of the Mussel Mytilus Galloprovincialis. Aquat. Toxicol. 2014;153:39–52. doi: 10.1016/j.aquatox.2014.02.003. PubMed DOI
Canesi L., Auguste M., Bebianno M.J. Sublethal Effects of Nanoparticles on Aquatic Invertebrates, from Molecular to Organism Level. In: Blasco J., Corsi I., editors. Ecotoxicology of Nanoparticles in Aquatic Systems. CRC Press; Boca Raton, FL, USA: 2019. pp. 38–61.
Kádár E., Lowe D.M., Solé M., Fisher A.S., Jha A.N., Readman J.W., Hutchinson T.H. Uptake and Biological Responses to Nano-Fe versus Soluble FeCl3 in Excised Mussel Gills. Anal. Bioanal. Chem. 2010;396:657–666. doi: 10.1007/s00216-009-3191-0. PubMed DOI
Pinsino A., Alijagic A. Sea Urchin Paracentrotus Lividus Immune Cells in Culture: Formulation of the Appropriate Harvesting and Culture Media and Maintenance Conditions. Biol. Open. 2019;8:7. doi: 10.1242/bio.039289. PubMed DOI PMC
Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofronova O., Pinsino A. Titanium Dioxide Nanoparticles Temporarily Influence the Sea Urchin Immunological State Suppressing Inflammatory-Relate Gene Transcription and Boosting Antioxidant Metabolic Activity. J. Hazard. Mater. 2020;11 doi: 10.1016/j.jhazmat.2019.121389. PubMed DOI
Nurnberger T., Brunner F., Kemmerling B., Piater L. Innate Immunity in Plants and Animals: Striking Similarities and Obvious Differences. Immunol. Rev. 2004;198:249–266. doi: 10.1111/j.0105-2896.2004.0119.x. PubMed DOI
Michelini S., Barbero F., Prinelli A., Steiner P., Weiss R., Verwanger T., Andosch A., Lütz-Meindl U., Puntes V.F., Drobne D., et al. Gold Nanoparticles (AuNPs) Impair LPS-Driven Immune Responses by Promoting a Tolerogenic-like Dendritic Cell Phenotype with Altered Endosomal Structures. Nanoscale. 2021 doi: 10.1039/D0NR09153G. PubMed DOI PMC
Koeffler H.P. Human Myeloid Leukemia Cell Lines: A Review. Blood. 1980;56:344–350. doi: 10.1182/blood.V56.3.344.344. PubMed DOI
Kroll A., Pillukat M.H., Hahn D., Schnekenburger J. Current in Vitro Methods in Nanoparticle Risk Assessment: Limitations and Challenges. Eur. J. Pharm. Biopharm. 2009;72:370–377. doi: 10.1016/j.ejpb.2008.08.009. PubMed DOI
Pott G., Chan E., Dinarello C.A., Shapiro L. A-1-Antitrypsin Is an Endogenous Inhibitor of Proinflammatory Cytokine Production in Whole Blood. J. Leukoc. Biol. 2009;85:11. doi: 10.1189/jlb.0208145. PubMed DOI PMC
Beguin Y., Noizat-Pirenne F., Pirenne J., Gathy R., Dehart I., Igot D., Baudrihaye M., Delacroix D., Franchimontl P. Direct stimulation of cytokines (il-lp, tnf-a, il-6, il-2, ifn-y and gm-csf) in whole blood. I. Comparison with isolated pbmc stimulation. Cytokine. 1992;4:239–248. PubMed
Kiertscher S.M., Roth M.D. Human CD14 + Leukocytes Acquire the Phenotype and Function of Antigen-Presenting Dendritic Cells When Cultured in GM-CSF and IL-4. J. Leukoc. Biol. 1996;59:208–218. doi: 10.1002/jlb.59.2.208. PubMed DOI
Pfeiffer I.A. Leukoreduction System Chambers Are an Efficient, Valid, and Economic Source of Functional Monocyte-Derived Dendritic Cells and Lymphocytes. Immunobiology. 2013;218:1392–1401. doi: 10.1016/j.imbio.2013.07.005. PubMed DOI
Arts R.J.W. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe. 2018;23:89–100.e5. doi: 10.1016/j.chom.2017.12.010. PubMed DOI
Pfaller T., Colognato R., Nelissen I., Favilli F., Casals E., Ooms D., Leppens H., Ponti J., Stritzinger R., Puntes V., et al. The Suitability of Different Cellular in Vitro Immunotoxicity and Genotoxicity Methods for the Analy. Nanotoxicology. 2010;4:52–72. doi: 10.3109/17435390903374001. PubMed DOI
Irvine D.J., Hanson M.C., Rakhra K., Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem. Rev. 2015;115:11109–11146. doi: 10.1021/acs.chemrev.5b00109. PubMed DOI PMC
Siddiqui D.M.H., Al-Whaibi M.H., Mohammad F. Nanotechnology and Plant. Sciences: Nanoparticles and Their Impact on Plants. Springer; New York, NY, USA: Berlin/Heidelberg, Germany: 2015.
Ma X., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between Engineered Nanoparticles (ENPs) and Plants: Phytotoxicity, Uptake and Accumulation. Sci. Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI
Koelmel J., Leland T., Wang H., Amarasiriwardena D., Xing B. Investigation of Gold Nanoparticles Uptake and Their Tissue Level Distribution in Rice Plants by Laser Ablation-Inductively Coupled-Mass Spectrometry. Environ. Pollut. 2013;174:222–228. doi: 10.1016/j.envpol.2012.11.026. PubMed DOI
Avellan A., Schwab F., Masion A., Chaurand P., Borschneck D., Vidal V., Rose J., Santaella C., Levard C. Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis Thaliana by X-Ray Computed Nanotomography and Hyperspectral Imaging. Environ. Sci. Technol. 2017;51:8682–8691. doi: 10.1021/acs.est.7b01133. PubMed DOI
Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria Italica L.) under Field Conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC
Al-Khaishany M.Y. Role of Nanoparticles in Plants. In: Siddiqui M.H., Al-Whaibi M.H., Mohammad F., editors. Nanotechnology and Plant Sciences. Springer International Publishing; Cham, Swizterland: 2015. pp. 19–35.
Hayashi Y., Miclaus T., Engelmann P., Autrup H., Sutherland D.S., Scott-Fordsmand J.J. Nanosilver Pathophysiology in Earthworms: Transcriptional Profiling of Secretory Proteins and the Implication for the Protein Corona. Nanotoxicology. 2016;10:303–331. doi: 10.3109/17435390.2015.1054909. PubMed DOI
Waalewijn-Kool P.L., Ortiz M.D. Effect of Different Spiking Procedures on the Distribution and Toxicity of ZnO Nanoparticles in Soil. Ecotoxicol. 2012;21:1797–1804. doi: 10.1007/s10646-012-0914-3. PubMed DOI PMC
Boraschi D., Oostingh G.J., Casals E., Italiani P., Nelissen I., Puntes V.F., Duschl A. Nano-Immunosafety: Issues in Assay Validation. J. Phys. Conf. Ser. 2011;304:9. doi: 10.1088/1742-6596/304/1/012077. DOI
Moret Y., Moreau J. The Immune Role of the Arthropod Exoskeleton. Invert. Surviv. J. 2012;9:200–206.
Mayall C., Dolar A., Jemec Kokalj A., Novak S., Razinger J., Barbero F., Puntes V., Drobne D. Stressor-Dependant Changes in Immune Parameters in the Terrestrial Isopod Crustacean, Porcellio Scaber: A Focus on Nanomaterials. Nanomaterials. 2021;11:934. doi: 10.3390/nano11040934. PubMed DOI PMC
Duroudier N., Katsumiti A., Mikolaczyk M., Schäfer J., Bilbao E., Cajaraville M.P. Dietary Exposure of Mussels to PVP/PEI Coated Ag Nanoparticles Causes Ag Accumulation in Adults and Abnormal Embryo Development in Their Offspring. Sci. Total Environ. 2019;655:48–60. doi: 10.1016/j.scitotenv.2018.11.181. PubMed DOI
Ward J.E., Kach D.J. Marine Aggregates Facilitate Ingestion of Nanoparticles by Suspension-Feeding Bivalves. Mar. Environ. Res. 2009;68:137–142. doi: 10.1016/j.marenvres.2009.05.002. PubMed DOI
Barmo C., Ciacci C., Canonico B., Fabbri R., Cortese K., Balbi T., Marcomini A., Pojana G., Gallo G., Canesi L. In Vivo Effects of N-TiO2 on Digestive Gland and Immune Function of the Marine Bivalve Mytilus Galloprovincialis. Aquat. Toxicol. 2013;132–133:9–18. doi: 10.1016/j.aquatox.2013.01.014. PubMed DOI
Auguste M. In Vivo Immunomodulatory and Antioxidant Properties of Nanoceria (NCeO2) in the Marine Mussel Mytilus Galloprovincialis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019;219:95–102. doi: 10.1016/j.cbpc.2019.02.006. PubMed DOI
Falugi C. Toxicity of Metal Oxide Nanoparticles in Immune Cells of the Sea Urchin. Mar. Environ. Res. 2012;76:114–121. doi: 10.1016/j.marenvres.2011.10.003. PubMed DOI
Pinsino A., Russo R., Bonaventura R., Brunelli A., Marcomini A., Matranga V. Titanium Dioxide Nanoparticles Stimulate Sea Urchin Immune Cell Phagocytic Activity Involving TLR/P38 MAPK-Mediated Signalling Pathway. Sci. Rep. 2015;5:14492. doi: 10.1038/srep14492. PubMed DOI PMC
Chivasa S., Ndimba B.K., Simon W.J., Lindsey K., Slabas A.R. Extracellular ATP Functions as an Endogenous External Metabolite Regulating Plant Cell Viability. Plant Cell. 2005;17:3019–3034. doi: 10.1105/tpc.105.036806. PubMed DOI PMC
Bigorgne E., Foucaud L., Caillet C., Giamberini L., Nahmani J., Thomas F., Rodius F. Cellular and Molecular Responses of E. Fetida Cœlomocytes Exposed to TiO2 Nanoparticles. J. Nanopart. Res. 2012;14:1–17. doi: 10.1007/s11051-012-0959-5. PubMed DOI
Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and Challenges in the Development and Validation of Human Cell-Based Assays to Determine Nanoparticle-Induced Immunomodulatory Effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC
Jones K., Kim D.W., Park J.S., Khang C.H. Live-Cell Fluorescence Imaging to Investigate the Dynamics of Plant Cell Death during Infection by the Rice Blast Fungus Magnaporthe Oryzae. BMC Plant Biol. 2016;16:69. doi: 10.1186/s12870-016-0756-x. PubMed DOI PMC
Huang C.-N., Cornejo M.J., Bush D.S., Jones R.L. Estimating Viability of Plant Protoplasts Using Double and Single Staining. Protoplasma. 1986;135:80–87. doi: 10.1007/BF01277001. DOI
Ciacci C., Canonico B., Bilaniĉovă D., Fabbri R., Cortese K., Gallo G., Marcomini A., Pojana G., Canesi L. Immunomodulation by Different Types of N-Oxides in the Hemocytes of the Marine Bivalve Mytilus Galloprovincialis. PLoS ONE. 2012;7:e36937. doi: 10.1371/journal.pone.0036937. PubMed DOI PMC
Moyen N.E., Bump P.A., Somero G.N., Denny M.W. Establishing Typical Values for Hemocyte Mortality in Individual California Mussels, Mytilus Californianus. Fish Shellfish Immunol. 2020;100:70–79. doi: 10.1016/j.fsi.2020.02.069. PubMed DOI
de Araújo R.F., Jr., de Araújo A.A., Pessoa J.B., Freire Neto F.P., da Silva G.R., Leitão Oliveira A.L., de Carvalho T.G., Silva H.F., Eugênio M., Sant’Anna C., et al. Anti-Inflammatory, Analgesic and Anti-Tumor Properties of Gold Nanoparticles. Pharmacol. Rep. 2017;69:12. doi: 10.1016/j.pharep.2016.09.017. PubMed DOI
Ikegawa H., Yamamoto Y., Matsumoto H. Cell Death Caused by a Combination of Aluminum and Iron in Cultured Tobacco Cells. Physiol. Plant. 1998;104:474–478. doi: 10.1034/j.1399-3054.1998.1040324.x. DOI
Katsumiti A., Gilliland D., Arostegui I., Cajaraville M.P. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells. PLoS ONE. 2015;10:e0129039. doi: 10.1371/journal.pone.0129039. PubMed DOI PMC
Fernández-Bautista N., Domínguez-Núñez J., Moreno M.M., Berrocal-Lobo M. Plant Tissue Trypan Blue Staining During Phytopathogen Infection. Bio-Protocol. 2016;6 doi: 10.21769/BioProtoc.2078. DOI
Gupta S., Kushwah T., Yadav S. Earthworm Coelomocytes as Nanoscavenger of ZnO NPs. Nanoscale Res. Lett. 2014;9:259. doi: 10.1186/1556-276X-9-259. PubMed DOI PMC
Parisi M.G. Effects of Organic Mercury on Mytilus Galloprovincialis Hemocyte Function and Morphology. J. Comp. Physiol. B. 2021;191:143–158. doi: 10.1007/s00360-020-01306-0. PubMed DOI PMC
Murano C., Bergami E., Liberatori G., Palumbo A., Corsi I. Interplay Between Nanoplastics and the Immune System of the Mediterranean Sea Urchin Paracentrotus Lividus. Front. Mar. Sci. 2021;8:647394. doi: 10.3389/fmars.2021.647394. DOI
Karlsson H.L., Cronholm P., Gustafsson J., Moller L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008;21:1726–1732. doi: 10.1021/tx800064j. PubMed DOI
Watanabe M., Setoguchi D., Uehara K., Ohtsuka W., Watanabe Y. Apoptosis-like Cell Death of Brassica Napus Leaf Protoplasts. New Phytol. 2002;156:417–426. doi: 10.1046/j.1469-8137.2000.00536.x. PubMed DOI
Wang H., Zhu X., Li H., Cui J., Liu C., Chen X., Zhang W. Induction of Caspase-3-like Activity in Rice Following Release of Cytochrome-f from the Chloroplast and Subsequent Interaction with the Ubiquitin-Proteasome System. Sci. Rep. 2015;4:5989. doi: 10.1038/srep05989. PubMed DOI PMC
Canesi L., Ciacci C., Bergami E., Monopoli M.P., Dawson K.A., Papa S., Canonico B., Corsi I. Evidence for Immunomodulation and Apoptotic Processes Induced by Cationic Polystyrene Nanoparticles in the Hemocytes of the Marine Bivalve Mytilus. Mar. Environ. Res. 2015;111:34–40. doi: 10.1016/j.marenvres.2015.06.008. PubMed DOI
Kumar G., Degheidy H., Casey B.J., Goering P.L. Flow Cytometry Evaluation of in Vitro Cellular Necrosis and Apoptosis Induced by Silver Nanoparticles. Food Chem. Toxicol. 2015;85:45–51. doi: 10.1016/j.fct.2015.06.012. PubMed DOI
Irizar A. Establishment of Toxicity Thresholds in Subpopulations of Coelomocytes (Amoebocytes vs. Eleocytes) of Eisenia Fetida Exposed in Vitro to a Variety of Metals: Implications for Biomarker Measurements. Ecotoxicology. 2015;24:1004–1013. doi: 10.1007/s10646-015-1441-9. PubMed DOI
Auguste M., Canesi L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front. Immunol. 2020;11:11. doi: 10.3389/fimmu.2020.00426. PubMed DOI PMC
Rocha T.L., Gomes T., Cardoso C., Letendre J., Pinheiro J.P., Sousa V.S., Teixeira M.R., Bebianno M.J. Immunocytotoxicity, Cytogenotoxicity and Genotoxicity of Cadmium-Based Quantum Dots in the Marine Mussel Mytilus Galloprovincialis. Mar. Environ. Res. 2014;101:29–37. doi: 10.1016/j.marenvres.2014.07.009. PubMed DOI
Tomic S., Ðokic J., Vasilijic S., Ogrinc N., Rudolf R., Pelicon P., Vučević D., Milosavljevic P., Rupnik M.S., Friedrich B. Size-Dependent Effects of Gold Nanoparticles Uptake on Maturation and Antitumor Functions of Human Dendritic Cells In Vitro. PLoS ONE. 2014;9:e96584. doi: 10.1371/journal.pone.0096584. PubMed DOI PMC
Yan A., Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. IJMS. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC
Taylor A.F., Rylott E.L., Anderson C.W.N., Bruce N.C. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold. PLoS ONE. 2014;9:e93793. doi: 10.1371/journal.pone.0093793. PubMed DOI PMC
Hayashi Y. Earthworms and Humans in Vitro: Characterizing Evolutionarily Conserved Stress and Immune Responses to Silver Nanoparticles. Environ. Sci. Technol. 2012;46:4166–4173. doi: 10.1021/es3000905. PubMed DOI
Auguste M., Mayall C., Barbero F., Hočevar M., Alberti S., Grassi G., Puntes V.F., Drobne D., Canesi L. Functional and Morphological Changes Induced in Mytilus Hemocytes by Selected Nanoparticles. Nanomaterials. 2021;11:470. doi: 10.3390/nano11020470. PubMed DOI PMC
Canesi L., Ciacci C., Fabbri R., Balbi T., Salis A., Damonte G., Cortese K., Caratto V., Monopoli M.P., Dawson K., et al. Interactions of Cationic Polystyrene Nanoparticles with Marine Bivalve Hemocytes in a Physiological Environment: Role of Soluble Hemolymph Proteins. Environ. Res. 2016;150:73–81. doi: 10.1016/j.envres.2016.05.045. PubMed DOI
Katsumiti A., Arostegui I., Oron M., Gilliland D., Valsami-Jones E., Cajaraville M.P. Cytotoxicity of Au, ZnO and SiO2 NPs Using in Vitro Assays with Mussel Hemocytes and Gill Cells: Relevance of Size, Shape and Additives. Nanotoxicology. 2015;10:185–193. doi: 10.3109/17435390.2015.1039092. PubMed DOI
Swartzwelter B.J., Barbero F., Verde A., Mangini M., Pirozzi M., Luca A.C.D., Puntes V.F., Leite L.C.C., Italiani P., Boraschi D. Gold Nanoparticles Modulate BCG-Induced Innate Immune Memory in Human Monocytes by Shifting the Memory Response towards Tolerance. Nanomaterials. 2019;9:1354. doi: 10.3390/cells9020284. PubMed DOI PMC
Kurepa J., Paunesku T., Vogt S., Arora H., Rabatic B.M., Lu J., Wanzer M.B., Woloschak G.E., Smalle J.A. Uptake and Distribution of Ultrasmall Anatase TiO2 Alizarin Red S Nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–2302. doi: 10.1021/nl903518f. PubMed DOI PMC
Timmers A.C.J., Tirlapur U.K., Schel J.H.N. Vacuolar Accumulation of Acridine Orange and Neutral Red in Zygotic and Somatic Embryos of Carrot (Daucus Carota L.) Protoplasma. 1995;188:236–244. doi: 10.1007/BF01280375. DOI
Weeks J.M., Svendsen C. Neutral Red Retention by Lysosomes from Earthworm (Lumbricus rubellus) Coelomocytes: A Simple Biomarker of Exposure to Soil Copper. Environ. Toxicol. Chem. 1996;15:1801–1805. doi: 10.1002/etc.5620151022. DOI
Long J. Internalization, Cytotoxicity, Oxidative Stress and Inflammation of Multi-Walled Carbon Nanotubes in Human Endothelial Cells: Influence of Pre-Incubation with Bovine Serum Albumin. RSC Adv. 2018;8:9253–9260. doi: 10.1039/C8RA00445E. PubMed DOI PMC
Liu Y., Schiff M., Czymmek K., Tallóczy Z., Levine B., Dinesh-Kumar S.P. Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell. 2005;121:567–577. doi: 10.1016/j.cell.2005.03.007. PubMed DOI
Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 Is Required to Limit the Pathogen-Associated Cell Death Response. Autophagy. 2008;4:20–27. doi: 10.4161/auto.5056. PubMed DOI
Auguste M. Effects of Nanosilver on Mytilus Galloprovincialis Hemocytes and Early Embryo Development. Aquat. Toxicol. 2018;203:107–116. doi: 10.1016/j.aquatox.2018.08.005. PubMed DOI
Borges J., Porto-Neto L., Mangiaterra M., Jensch-Junior B., da Silva J. Phagocytosis in Vitro and in Vivo in the Antarctic Sea Urchin Sterechinus Neumayeri at 0 °C. Polar Biol. 2002;25:891–897. doi: 10.1007/s00300-002-0431-6. DOI
Gustafson H.H., Holt-Casper D., Grainger D.W., Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today. 2015;10:487–510. doi: 10.1016/j.nantod.2015.06.006. PubMed DOI PMC
Thwala M., Musee N., Sikhwivhilu L., Wepener V. The Oxidative Toxicity of Ag and ZnO Nanoparticles towards the Aquatic Plant Spirodela Punctuta and the Role of Testing Media Parameters. Environ. Sci. Processes Impacts. 2013;15:1830. doi: 10.1039/c3em00235g. PubMed DOI
Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica Juncea. Appl. Biochem. Biotechnol. 2012;167:2225–2233. doi: 10.1007/s12010-012-9759-8. PubMed DOI
Moreira R., Romero A., Rey-Campos M., Pereiro P., Rosani U., Novoa B., Figueras A. Stimulation of Mytilus Galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, MiRNomic, and Functional Responses. Front. Immunol. 2020;11:606102. doi: 10.3389/fimmu.2020.606102. PubMed DOI PMC
Magesky A., de Oliveira Ribeiro C.A., Beaulieu L., Pelletier É. Silver Nanoparticles and Dissolved Silver Activate Contrasting Immune Responses and Stress-Induced Heat Shock Protein Expression in Sea Urchin: Nanosilver and Dissolved Ag Effects in Sea Urchins. Environ. Toxicol. Chem. 2017;36:1872–1886. doi: 10.1002/etc.3709. PubMed DOI
Minai L., Yeheskely-Hayon D., Yelin D. High Levels of Reactive Oxygen Species in Gold Nanoparticle-Targeted Cancer Cells Following Femtosecond Pulse Irradiation. Sci. Rep. 2013;3:srep02146. doi: 10.1038/srep02146. PubMed DOI PMC
Shi J. Inflammatory Caspases Are Innate Immune Receptors for Intracellular LPS. Nat. Cell Biol. 2014;514:187–192. doi: 10.1038/nature13683. PubMed DOI
Reddy Pullagurala V.L., Adisa I.O., Rawat S., Kalagara S., Hernandez-Viezcas J.A., Peralta-Videa J.R., Gardea-Torresdey J.L. ZnO Nanoparticles Increase Photosynthetic Pigments and Decrease Lipid Peroxidation in Soil Grown Cilantro (Coriandrum Sativum) Plant Physiol. Biochem. 2018;132:120–127. doi: 10.1016/j.plaphy.2018.08.037. PubMed DOI
Capolupo M., Valbonesi P., Fabbri E. A Comparative Assessment of the Chronic Effects of Micro- and Nano-Plastics on the Physiology of the Mediterranean Mussel Mytilus Galloprovincialis. Nanomaterials. 2021;11:649. doi: 10.3390/nano11030649. PubMed DOI PMC
Paciorek P. Products of Lipid Peroxidation as a Factor in the Toxic Effect of Silver Nanoparticles. Materials. 2020;13:2460. doi: 10.3390/ma13112460. PubMed DOI PMC
Chen W., Provart N.J., Glazebrook J., Katagiri F., Chang H.-S., Eulgem T., Mauch F., Luan S., Zou G., Whitham S.A., et al. Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses. Plant Cell. 2002;14:559–574. doi: 10.1105/tpc.010410. PubMed DOI PMC
Tripathi D.K., Singh S., Singh S., Srivastava P.K., Singh V.P., Singh S., Prasad S.M., Singh P.K., Dubey N.K., Pandey A.C., et al. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 2017;110:167–177. doi: 10.1016/j.plaphy.2016.06.015. PubMed DOI
Homa J., Zorska A., Wesolowski D., Chadzinska M. Dermal Exposure to Immunostimulants Induces Changes in Activity and Proliferation of Coelomocytes of Eisenia Andrei. J. Comp. Physiol. B. 2013;183:313–322. doi: 10.1007/s00360-012-0710-7. PubMed DOI PMC
Ma J.S., Kim W.J., Kim J.J., Kim T.J., Ye S.K., Song M.D., Kang H., Kim D.W., Moon W.K., Lee K.H. Gold Nanoparticles Attenuate LPS-Induced NO Production through the Inhibition of NF-ΚB and IFN-β/STAT1 Pathways in RAW264.7 Cells. Nitric Oxide. 2010;23:214–219. doi: 10.1016/j.niox.2010.06.005. PubMed DOI
Sakthivel M., Karthikeyan N., Palani P. Detection and analysis of lysozyme activity in some tuberous plants and calotropis procera’s latex. J. Phytol. 2010;2:65–72.
Fiołka M.J., Zagaja M.P., Hułas-Stasiak M., Wielbo J. Activity and Immunodetection of Lysozyme in Earthworm Dendrobaena Veneta (Annelida) J. Invertebr. Pathol. 2012;109:83–90. doi: 10.1016/j.jip.2011.10.002. PubMed DOI
Auguste M., Lasa A., Balbi T., Pallavicini A., Vezzulli L., Canesi L. Impact of Nanoplastics on Hemolymph Immune Parameters and Microbiota Composition in Mytilus Galloprovincialis. Mar. Environ. Res. 2020;159:105017. doi: 10.1016/j.marenvres.2020.105017. PubMed DOI
Shimizu M., Kohno S., Kagawa H., Ichise N. Lytic Activity and Biochemical Properties of Lysozyme in the Coelomic Fluid of the Sea UrchinStrongylocentrotus Intermedius. J. Invertebr. Pathol. 1999;73:214–222. doi: 10.1006/jipa.1998.4808. PubMed DOI
Pagliara P., Stabili L. Zinc Effect on the Sea Urchin Paracentrotus Lividus Immunological Competence. Chemosphere. 2012;89:563–568. doi: 10.1016/j.chemosphere.2012.05.052. PubMed DOI
Ragland S.A., Criss A.K. From Bacterial Killing to Immune Modulation: Recent Insights into the Functions of Lysozyme. PLoS Pathog. 2017;13:e1006512. doi: 10.1371/journal.ppat.1006512. PubMed DOI PMC
Dinarello C.A. Historical Insights into Cytokines. Eur. J. Immunol. 2007;37:S34–S45. doi: 10.1002/eji.200737772. PubMed DOI PMC
Smith-Garvin J.E., Koretzky G.A., Jordan M.S. T Cell Activation. Annu. Rev. Immunol. 2009;27:591–619. doi: 10.1146/annurev.immunol.021908.132706. PubMed DOI PMC
Procházková P., Silerova M., Stijlemans B., Dieu M., Halada P., Joskova R., Beschin A., De Baetselier P., Bilej M. Evidence for Proteins Involved in Prophenoloxidase Cascade Eisenia Fetida Earthworms. J. Comp. Physiol. B. 2006;176:581–587. doi: 10.1007/s00360-006-0081-z. PubMed DOI
Cheng Y. Identification and Characterization of Proteins with Phenoloxidase-like Activities in the Sea Urchin Strongylocentrotus Nudus. Fish Shellfish. Immunol. 2015;47:117–121. doi: 10.1016/j.fsi.2015.08.020. PubMed DOI
Kumar V., Guleria P., Kumar V., Yadav S.K. Gold Nanoparticle Exposure Induces Growth and Yield Enhancement in Arabidopsis Thaliana. Sci. Total Environ. 2013:462–468. doi: 10.1016/j.scitotenv.2013.05.018. PubMed DOI
Bergami E., Krupinski Emerenciano A., González-Aravena M., Cárdenas C.A., Hernández P., Silva J.R.M.C., Corsi I. Polystyrene Nanoparticles Affect the Innate Immune System of the Antarctic Sea Urchin Sterechinus Neumayeri. Polar Biol. 2019;42:743–757. doi: 10.1007/s00300-019-02468-6. DOI
Mincarelli L. Evaluation of Gene Expression of Different Molecular Biomarkers of Stress Response as an Effect of Copper Exposure on the Earthworm EIsenia Andrei. Ecotoxicology. 2019;28:938–948. doi: 10.1007/s10646-019-02093-3. PubMed DOI
Chan S.L., Mukasa T., Santelli E., Low L.Y., Pascual J. The Crystal Structure of a TIR Domain from Arabidopsis Thaliana Reveals a Conserved Helical Region Unique to Plants. Protein Sci. 2009 doi: 10.1002/pro.275. PubMed DOI PMC
Vasilichin V.A., Tsymbal S.A., Fakhardo A.F., Anastasova E.I., Marchenko A.S., Shtil A.A., Vinogradov V.V., Koshel E.I. Effects of Metal Oxide Nanoparticles on Toll-Like Receptor MRNAs in Human Monocytes. Nanomaterials. 2020;10:127. doi: 10.3390/nano10010127. PubMed DOI PMC
Iizasa S., Iizasa E., Matsuzaki S., Tanaka H., Kodama Y., Watanabe K., Nagano Y. Arabidopsis LBP/BPI Related-1 and -2 Bind to LPS Directly and Regulate PR1 Expression. Sci. Rep. 2016;6:27527. doi: 10.1038/srep27527. PubMed DOI PMC
OSPAR Background Document and Technical Annexes for Biological Effects Monitoring. [(accessed on 8 June 2021)];2013 Available online: https://mcc.jrc.ec.europa.eu/documents/OSPAR/OSPAR_CoordinatedEnvironmentalMonitoringProgramme_CEMP.pdf.
Conte C., Dal Poggetto G., Swartzwelter B., Esposito D., Ungaro F., Laurienzo P., Boraschi D., Quaglia F. Surface Exposure of PEG and Amines on Biodegradable Nanoparticles as a Strategy to Tune Their Interaction with Protein-Rich Biological Media. Nanomaterials. 2019;9:1354. doi: 10.3390/nano9101354. PubMed DOI PMC
Gautam A. Immunotoxicity of Copper Nanoparticle and Copper Sulfate in a Common Indian Earthworm. Ecotoxicol. Environ. Saf. 2018;148:620–631. doi: 10.1016/j.ecoenv.2017.11.008. PubMed DOI
Dvořák J., Mančíková V., Pižl V., Elhottová D., Šilerová M., Roubalová R., Škanta F., Procházková P., Bilej M. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia Andrei and Eisenia Fetida. PLoS ONE. 2013;8:e79257. PubMed PMC
Dvořák J. Sensing Microorganisms in the Gut Triggers the Immune Response in Eisenia Andrei Earthworms. Dev. Comp. Immunol. 2016;57:67–74. doi: 10.1016/j.dci.2015.12.001. PubMed DOI
Bhattacharya K. Fundamentals of Qualitative Research A Practical Guide. Routledge; London, UK: 2017.
Banchereau J., Steinman R.M. Dendritic Cells and the Control of Immunity. Nature. 1998;392:245–252. doi: 10.1038/32588. PubMed DOI
Buffet P.-E., Richard M., Caupos F., Vergnoux A., Perrein-Ettajani H., Luna-Acosta A., Akcha F., Amiard J.-C., Amiard-Triquet C., Guibbolini M., et al. A Mesocosm Study of Fate and Effects of CuO Nanoparticles on Endobenthic Species (Scrobicularia Plana, Hediste Diversicolor) Environ. Sci. Technol. 2013:130110104824003. doi: 10.1021/es303513r. PubMed DOI
van Straalen N.M., Feder M.E. Ecological and Evolutionary Functional Genomics—How Can It Contribute to the Risk Assessment of Chemicals? Environ. Sci. Technol. 2012;46:3–9. doi: 10.1021/es2034153. PubMed DOI
Maleck K., Levine A., Eulgem T., Morgan A., Schmid J., Lawton K.A., Dietrich R.A. The Transcriptome of Arabidopsis Thaliana during Systemic Acquired Resistance. Nat. Genet. 2000;26:8. doi: 10.1038/82521. PubMed DOI
Détrée C., Gallardo-Escárate C. Single and Repetitive Microplastics Exposures Induce Immune System Modulation and Homeostasis Alteration in the Edible Mussel Mytilus Galloprovincialis. Fish Shellfish Immunol. 2018;83:52–60. doi: 10.1016/j.fsi.2018.09.018. PubMed DOI
Felice B.D., Parolini M. Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves? J. Mar. Sci. Eng. 2020;8:1033. doi: 10.3390/jmse8121033. DOI
Duroudier N. Changes in Protein Expression in Mussels Mytilus Galloprovincialis Dietarily Exposed to PVP/PEI Coated Silver Nanoparticles at Different Seasons. Aquat. Toxicol. 2019;210:56–68. doi: 10.1016/j.aquatox.2019.02.010. PubMed DOI
Syu Y. Impacts of Size and Shape of Silver Nanoparticles on Arabidopsis Plant Growth and Gene Expression. Plant Physiol. Biochem. 2014;83:57–64. doi: 10.1016/j.plaphy.2014.07.010. PubMed DOI