Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review

. 2021 Jun 09 ; 11 (6) : . [epub] 20210609

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34207693

Grantová podpora
671881 Horizon 2020

Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.

Zobrazit více v PubMed

Casals E., Gonzalez E., Puntes V.F. Reactivity of Inorganic Nanoparticles in Biological Environments: Insights into Nanotoxicity Mechanisms. J. Phys. D Appl. Phys. 2012;45:443001. doi: 10.1088/0022-3727/45/44/443001. DOI

Aitken R.J., Chaudhry M.Q., Boxall A.B.A., Hull M. Manufacture and Use of Nanomaterials: Current Status in the UK and Global Trends. Occup. Med. 2006;56:300–306. doi: 10.1093/occmed/kql051. PubMed DOI

Maynard A.D., Aitken R.J., Butz T., Colvin V., Donaldson K., Oberdorster G., Philbert M.A., Ryan J., Seaton A., Stone V. Safe Handling of Nanotechnology. Nature. 2006;444:267–269. doi: 10.1038/444267a. PubMed DOI

Schmid K., Riediker M. Use of Nanoparticles in Swiss Industry: A Targeted Survey. Environ. Sci. Technol. 2008;42:2253–2260. doi: 10.1021/es071818o. PubMed DOI

Bogart L.K., Pourroy G., Murphy C.J., Puntes V., Pellegrino T., Rosenblum D., Peer D. Nanoparticles for Imaging, Sensing, and Therapeutic Intervention. ACS Nano. 2014;8:16. doi: 10.1021/nn500962q. PubMed DOI PMC

Pulit-Prociak J., Banach M. Silver Nanoparticles—A Material of the Future…? Open Chem. 2016;14 doi: 10.1515/chem-2016-0005. DOI

Boraschi D. From Antigen Delivery System to Adjuvanticy: The Board Application of Nanoparticles in Vaccinology. Vaccines. 2015;10:930–939. doi: 10.3390/vaccines3040930. PubMed DOI PMC

Lehner R. Intelligent Nanomaterials for Medicine: Carrier Platforms and Targeting Strategies in the Context of Clinical Application. Nanomedicine. 2013;16:742–757. doi: 10.1016/j.nano.2013.01.012. PubMed DOI

Boraschi D. Interaction of Engineered Nanomaterials with the Immune System: Health-Related Safety and Possible Benefits. Curr. Opin. Toxicol. 2018;10:74–83. doi: 10.1016/j.cotox.2018.02.002. DOI

Moghimi S.M., Hunter A.C., Murray J.C. Nanomedicine: Current Status and Future Prospects. FASEB J. 2005;19:311–330. doi: 10.1096/fj.04-2747rev. PubMed DOI

Nel A., Xia T. Toxic Potential of Materials at the Nanolevel. Science. 2006;311:622–627. doi: 10.1126/science.1114397. PubMed DOI

Dobrovolskaia M., McNeil S. Immunological Properties of Engineered Nanomaterials. Nat. Nanotechnol. 2007;2:10. doi: 10.1038/nnano.2007.223. PubMed DOI

Fadeel B., Garcia-Bennett A.E. Better Safe than Sorry: Understanding the Toxicological Properties of Inorganic Nanoparticles Manufactured for Biomedical Applications. Adv. Drug Deliv. Rev. 2010;13:362–374. doi: 10.1016/j.addr.2009.11.008. PubMed DOI

Jiang Z., Jacob J.A., Li J., Wu X., Wei G., Vimalanathan A., Mani R., Nainangu P., Rajadurai U.M., Chen B. Influence of Diet and Dietary Nanoparticles on Gut Dysbiosis. Microb. Pathog. 2018;118:61–65. doi: 10.1016/j.micpath.2018.03.017. PubMed DOI

Spurgeon D.J., Lahive E., Schultz C.L. Nanomaterial Transformations in the Environment: Effects of Changing Exposure Forms on Bioaccumulation and Toxicity. Small. 2020;16 doi: 10.1002/smll.202000618. PubMed DOI

Mittal D., Kaur G., Singh P., Yadav K., Ali S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020;2:579954. doi: 10.3389/fnano.2020.579954. DOI

Bundschuh M. Nanoparticles in the Environment: Where Do We Come from, Where Do We Go To? Environ. Sci. Eur. 2018;30:6. doi: 10.1186/s12302-018-0132-6. PubMed DOI PMC

Graca B., Zgrundo A., Zakrzewska D., Rzodkiewicz M., Karczewski J. Origin and Fate of Nanoparticles in Marine Water-Preliminary Results. Chemosphere. 2018;206:359–368. doi: 10.1016/j.chemosphere.2018.05.022. PubMed DOI

Gottschalk F., Lassen C., Kjoelholt J., Christensen F., Nowack B. Modeling Flows and Concentrations of Nine Engineered Nanomaterials in the Danish Environment. Int. J. Environ. Res. Public Health. 2015;12:5581–5602. doi: 10.3390/ijerph120505581. PubMed DOI PMC

Rocha T.L., Gomes T., Sousa V.S., Mestre N.C., Bebianno M.J. Ecotoxicological Impact of Engineered Nanomaterials in Bivalve Molluscs: An Overview. Mar. Environ. Res. 2015;111:74–88. doi: 10.1016/j.marenvres.2015.06.013. PubMed DOI

Boraschi D., Alijagic A., Auguste M., Barbero F., Ferrari E., Hernadi S., Mayall C., Michelini S., Pacheco N.I.N., Prinelli A., et al. Addressing Nanomaterial Immunosafety by Evaluating Innate Immunity across Living Species. Small. 2020;16 doi: 10.1002/smll.202000598. PubMed DOI

Swartzwelter B.J., Fux A.C., Johnson L., Swart E., Hofer S., Hofstätter N., Geppert M., Italiani P., Boraschi D., Duschl A., et al. The Impact of Nanoparticles on Innate Immune Activation by Live Bacteria. Int. J. Mol. Sci. 2020;23:9695. doi: 10.3390/ijms21249695. PubMed DOI PMC

Boraschi D., Duschl A. Nanoparticles and the Immune System: Safety and Effects. Elsevier/AP; Amsterdam, The Netherlands: 2014.

Mitchell-Olds T. Arabidopsis Thaliana and Its Wild Relatives: A Model System for Ecology and Evolution. Trends Ecol. Evol. 2001;16 doi: 10.1016/S0169-5347(01)02291-1. DOI

Bevan M., Walsh S. The Arabidopsis Genome: A Foundation for Plant Research. Genome Res. 2005;15:1632–1642. doi: 10.1101/gr.3723405. PubMed DOI

The Arabidopsis Genome Iniative Analysis of the Genome Sequence of the Flowering Plant Arabidopsis Thaliana. Nature. 2000;408:796–815. doi: 10.1038/35048692. PubMed DOI

OECD . Test No 222. Earthworm Reproduction Test (Eisenia Fetida/ Eisenia Andrei) OECD; Paris, France: 2016.

Edwards C.A., Bohlen P.J. Biology and Ecology of Earthworms. Chapman&Hall; London, UK: 1996.

Van Gestel C.A.M., Loureiro S., Zidar P. Terrestrial Isopods as Model Organisms in Soil Ecotoxicology: A Review. Zookeys. 2018;801:127–162. doi: 10.3897/zookeys.801.21970. PubMed DOI PMC

Malev O. Effects of CeO2 Nanoparticles on Terrestrial Isopod Porcellio Scaber: Comparison of CeO2 Biological Potential with Other Nanoparticles. Arch. Environ. Contam. Toxicol. 2017;72:303–311. doi: 10.1007/s00244-017-0363-3. PubMed DOI

Novak S., Romih T., Dra B., Ferraris P., Sorieul S., Zieba M., Sebastian V., Arruebo M., Ho S.B. The in Vivo Effects of Silver Nanoparticles on Terrestrial Isopods, Porcellio Scaber, Depend on a Dynamic Interplay between Shape, Size and Nanoparticle Dissolution Properties. Analyst. 2019;2 doi: 10.1039/C8AN01387J. PubMed DOI

Beyer J., Green N.W., Brooks S., Allan I.J., Ruus A., Gomes T., Bråte I.L.N., Schøyen M. Blue Mussels (Mytilus Edulis spp.) as Sentinel Organisms in Coastal Pollution Monitoring: A Review. Mar. Environ. Res. 2017;130:338–365. doi: 10.1016/j.marenvres.2017.07.024. PubMed DOI

Fernández Robledo J.A., Yadavalli R., Allam B., Pales Espinosa E., Gerdol M., Greco S., Stevick R.J., Gómez-Chiarri M., Zhang Y., Heil C.A., et al. From the Raw Bar to the Bench: Bivalves as Models for Human Health. Dev. Comp. Immunol. 2019;92:260–282. doi: 10.1016/j.dci.2018.11.020. PubMed DOI PMC

Chou H.-Y., Lun C.M., Smith L.C. SpTransformer Proteins from the Purple Sea Urchin Opsonize Bacteria, Augment Phagocytosis, and Retard Bacterial Growth. PLoS ONE. 2018;13:e0196890. doi: 10.1371/journal.pone.0196890. PubMed DOI PMC

Pandora-H2020. [(accessed on 16 February 2021)]; Available online: https://www.Pandora-H2020.Eu/

Pinsino A., Bastús N.G., Busquets-Fité M., Canesi L., Cesaroni P., Drobne D., Duschl A., Ewart M.-A., Gispert I., Horejs-Hoeck J., et al. Probing the Immune Responses to Nanoparticles across Environmental Species. A Perspective of the EU Horizon 2020 Project PANDORA. Environ. Sci. Nano. 2020;7:3216–3232. doi: 10.1039/D0EN00732C. DOI

Soderhall K. Invertebrate Immunity. Advances in Experimental Medicine and Biology. Landes Bioscience and Springer Science+Business Media, LLC; New York, NY, USA: 2010. PubMed

Canesi L., Procházková P. The Invertebrate Immune System as a Model for Investigating the Environmental Impact of Nanoparticles. In: Boraschi D., Duschl A., editors. Nanoparticles and the Immune System Safety and Effects. Academic Press; Cambridge, MA, USA: 2014. pp. 91–112.

Jones J.D.G., Dangl J.L. The Plant Immune System. Nature. 2006;444:323–329. doi: 10.1038/nature05286. PubMed DOI

Takeuchi O., Akira S. Pattern Recognition Receptors and Inflammation. Cell. 2010;140:805–820. doi: 10.1016/j.cell.2010.01.022. PubMed DOI

Sarma J.V., Ward P.E. The Complement System. Cell Tissue Res. 2011;343:227–235. doi: 10.1007/s00441-010-1034-0. PubMed DOI PMC

Bilej M., Baetselier P.D., Dijck E.V., Stijlemans B., Colige A., Beschin A. Distinct Carbohydrate Recognition Domains of an Invertebrate Defense Molecule Recognize Gram-Negative and Gram-Positive Bacteria. J. Biol. Chem. 2001;276:45840–45847. doi: 10.1074/jbc.M107220200. PubMed DOI

Soderhall K., Cerenius L. Role of the Prophenoloxidase-Activating System in Invertebrate Immunity. Curr. Opin. Immunol. 1998;10:23–28. doi: 10.1016/S0952-7915(98)80026-5. PubMed DOI

Jaenicke E., Fraune S., May S., Irmak P., Augustin R., Meesters C., Decker H., Zimmer M. Is Activated Hemocyanin Instead of Phenoloxidase Involved in Immune Response in Woodlice? Dev. Comp. Immunol. 2009;33:1055–1063. doi: 10.1016/j.dci.2009.05.005. PubMed DOI

Motion G.B., Huitema E. Nuclear Processes Associated with Plant Immunity and Pathogen Susceptibility. Brief Funct. Genom. 2015;14:243–252. doi: 10.1093/bfgp/elv013. PubMed DOI PMC

Coll N., Epple P., Dangl J. Programmed Cell Death in the Plant Immune System. Cell Death Differ. 2011;18:1247–1256. doi: 10.1038/cdd.2011.37. PubMed DOI PMC

Newman M.-A. MAMP (Microbe-Associated Molecular Pattern) Triggered Immunity in Plants. Front. Plant Sci. 2013;4:139. doi: 10.3389/fpls.2013.00139. PubMed DOI PMC

Miescher-Institut F., Box P.O. FLS2: An LRR Receptor–like Kinase Involved in the Perception of the Bacterial Elicitor Flagellin in Arabidopsis. Mol. Cell. 2000;5:1003–1011. PubMed

Boutrot F., Zipfel C. Function, Discovery, and Exploitation of Plant Pattern Recognition Receptors for Broad-Spectrum Disease Resistance. Annu. Rev. Phytopathol. 2017;55:257–286. doi: 10.1146/annurev-phyto-080614-120106. PubMed DOI

Dangl J.L., Horvath D.M., Staskawicz B.J. Pivoting the Plant Immune System from Dissection to Deployment. Science. 2013;14 doi: 10.1126/science.1236011. PubMed DOI PMC

Gust A.A., Pruitt R., Nürnberger T. Sensing Danger: Key to Activating Plant Immunity. Trends Plant Sci. 2017;22:779–791. doi: 10.1016/j.tplants.2017.07.005. PubMed DOI

Sukarta O.C.A. Structure-Informed Insights for NLR Functioning in Plant Immunity. Semin. Cell Dev. Biol. 2016;56:134–149. doi: 10.1016/j.semcdb.2016.05.012. PubMed DOI

Thomma B.P.H.J., Nürnberger T., Joosten M.H.A.J. Of PAMPs and Effectors: The Blurred PTI-ETI Dichotomy. Plant. Cell. 2011;23:4–15. doi: 10.1105/tpc.110.082602. PubMed DOI PMC

Tao Y., Xie Z., Chen W., Glazebrook J., Chang H.-S., Han B., Zhu T., Zou G., Katagiri F. Quantitative Nature of Arabidopsis Responses during Compatible and Incompatible Interactions with the Bacterial Pathogen Pseudomonas Syringae. Plant Cell. 2003;15:317–330. doi: 10.1105/tpc.007591. PubMed DOI PMC

Bigeard J. Signaling Mechanisms in Pattern-Triggered Immunity (PTI) Mol. Plant. 2015;8:521–539. doi: 10.1016/j.molp.2014.12.022. PubMed DOI

Chagas F.O., Pessotti R.D.C., Caraballo-Rodrıguez A.M., Pupo M.T. Chemical Signaling Involved in Plant–Microbe Interactions. Chem. Soc. Rev. 2018;47:1652–1704. doi: 10.1039/C7CS00343A. PubMed DOI

Halim V.A., Vess A., Scheel D., Rosahl S. The Role of Salicylic Acid and Jasmonic Acid in Pathogen Defence. Plant Biol. 2006;8:307–313. doi: 10.1055/s-2006-924025. PubMed DOI

Kachroo P., Kachroo A. The Roles of Salicylic Acid and Jasmonic Acid in Plant Immunity. In: Sessa G., editor. Molecular Plant Immunity. Wiley-Blackwell; Oxford, UK: 2012. pp. 55–79.

Bilej M., Procházková P., Silerova M., Joskova R. Invertebrate Immunity. Landes Bioscience and Springer Science; New York, NY, USA: 2010. Earthworm immunity; pp. 66–79. PubMed

Cooper E.L., Kauschke E., Cossarizza A. Digging for Innate Immunity since Darwin and Metchnikoff. BioEssays. 2002;24:319–333. doi: 10.1002/bies.10077. PubMed DOI

Molnár L. Cold-Stress Induced Formation of Calcium and Phosphorous Rich Chloragocyte Granules (Chloragosomes) in the Earthworm Eisenia Fetida. Comp. Biochem. Physiol. 2012;11:199–209. doi: 10.1016/j.cbpa.2012.06.005. PubMed DOI

Beschin A., Bilej M., Hanssens F., Raymakers J., Dyck E.V., Revets H., Brys L., Gomez J., Baetselier P.D., Timmermans M. Identification and Cloning of a Glucan- and Lipopolysaccharide- Binding Protein from Eisenia Foetida Earthworm Involved in the Activation of Prophenoloxidase Cascade. J. Biol. Chem. 1998;273:24948–24954. doi: 10.1074/jbc.273.38.24948. PubMed DOI

Škanta F., Roubalová R., Dvořák J., Procházková P., Bilej M. Molecular Cloning and Expression of TLR in the Eisenia Andrei Earthworm. Dev. Comp. Immunol. 2013;41:694–702. doi: 10.1016/j.dci.2013.08.009. PubMed DOI

Škanta F. LBP/BPI Homologue in Eisenia Andrei Earthworms. Dev. Comp. Immunol. 2016;54:1–6. doi: 10.1016/j.dci.2015.08.008. PubMed DOI

Silerova M., Prochazkova P., Joskova R., Josens G., Beschin A., De Baetselier P., Bilej M. Comparative Study of the CCF-like Pattern Recognition Protein in Different Lumbricid Species. Dev. Comp. Immunol. 2006;30:765–771. doi: 10.1016/j.dci.2005.11.002. PubMed DOI

Cotuk A., Dales R.P. Lyzomyme Activity in the Coelomic Fluid and Coelomocytes of the Earthworm Eisenia Foetida Sav. in Relation to Bacterial Infection. Comp. Biochem. Physiol. 1984;78A:469–474. doi: 10.1016/0300-9629(84)90580-2. DOI

Joskova R., Šilerová M. Identification and Cloning of an Invertebrate-Type Lysozyme from Eisenia Andrei. Dev. Comp. Immunol. 2009;33:932–938. doi: 10.1016/j.dci.2009.03.002. PubMed DOI

Lassegues M., Milochau’ A., Doignon F., Pasquier L.D., Valembois P. Sequence and Expression of an Eisenia-Fetida-Derived CDNA Clone That Encodes the 40-KDa Fetidin Antibacterial Protein. JBIC J. Biol. Inorg. Chem. 1997;246:756–762. PubMed

Sekizawa Y., Hagiwara K., Nakajima T., Kobayashi H. A Novel Protein, Lysenin, That Causes Contraction of the Isolated Rat Aorta: Its Purification from the Coelomic Fluid of the Earthworm Eisenia Foetida. Biomed. Res. 1996;17:197–203. doi: 10.2220/biomedres.17.197. DOI

Chevalier F., Herbinière-Gaboreau J., Bertaux J., Raimond M., Morel F., Bouchon D., Grève P., Braquart-Varnier C. The Immune Cellular Effectors of Terrestrial Isopod Armadillidium Vulgare: Meeting with Their Invaders, Wolbachia. PLoS ONE. 2011;6:e18531. doi: 10.1371/journal.pone.0018531. PubMed DOI PMC

Kostanjšek R. Pathogenesis, Tissue Distribution and Host Response to Rhabdochlamydia Porcellionis Infection in Rough Woodlouse Porcellio Scaber. J. Invertebr. Pathol. 2015;125:56–67. doi: 10.1016/j.jip.2015.01.001. PubMed DOI

Liu H. Phenoloxidase Is an Important Component of the Defense against Aeromonas Hydrophila Infection in a Crustacean, Pacifastacus Leniusculus. J. Biol. Chem. 2007;282:33593–33598. doi: 10.1074/jbc.M706113200. PubMed DOI

Zhou Y. Ginger Extract Extends the Lifespan of Drosophila Melanogaster through Antioxidation and Ameliorating Metabolic Dysfunction. J. Funct. Foods. 2018;49:295–305. doi: 10.1016/j.jff.2018.08.040. DOI

Jiravanichpaisal P., Lee B.L., Söderhäll K. Cell-Mediated Immunity in Arthropods: Hematopoiesis, Coagulation, Melanization and Opsonization. Immunobiology. 2006;211:213–236. doi: 10.1016/j.imbio.2005.10.015. PubMed DOI

Yeh F.-C., Wu S.-H., Lai C.-Y., Lee C.-Y. Demonstration of Nitric Oxide Synthase Activity in Crustacean Hemocytes and Anti-Microbial Activity of Hemocyte-Derived Nitric Oxide. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2006;144:11–17. doi: 10.1016/j.cbpb.2006.01.007. PubMed DOI

Rosa R., Barracco M. Antimicrobial Peptides in Crustaceans. Invert. Surviv. J. 2010;7:262–284.

Chevalier F., Herbinière-Gaboreau J., Charif D., Mitta G., Gavory F., Wincker P., Grève P., Braquart-Varnier C., Bouchon D. Feminizing Wolbachia: A Transcriptomics Approach with Insights on the Immune Response Genes in Armadillidium Vulgare. BMC Microbiol. 2012;12:S1. doi: 10.1186/1471-2180-12-S1-S1. PubMed DOI PMC

Canesi L., Pruzzo C. Specificity of Innate Immunity in bivalves: A Lesson From Bacteria. In: Ballarin L., Cammarata M., editors. Lessons in Immunity: From Single-Cell Organisms to Mammals. Academic Press; Cambridge, MA, USA: 2016. pp. 79–92.

Gerdol. M., Gomez-Chiari M., Castillo M.G., Figueras A., Fiorito G., Moreira R., Novoa B., Pallavicini A., Ponte G., Roumbedakis K., et al. Immunity in Molluscs: Recognition and Effector Mechanisms, with a Focus on Bivalvia. In: Cooper E., editor. Advances in Comparative Immunology. Springer; Berlin/Heidelberg, Germany: 2018. pp. 225–342.

Pezzati E., Canesi L., Damonte G., Salis A., Marsano F., Grande C., Vezzulli L., Pruzzo C. Susceptibility of V Ibrio Aestuarianu s 01/032 to the Antibacterial Activity of M Ytilus Haemolymph: Identification of a Serum Opsonin Involved in Mannose-Sensitive Interactions: Vibrio Aestuarianus and Bivalve Haemocytes. Environ. Microbiol. 2015;17:4271–4279. doi: 10.1111/1462-2920.12750. PubMed DOI

Song L., Wang L., Qiu L., Zhang H. Invertebrate Immunity. Landes Bioscience and Springer Science; New York, NY, USA: 2010. Bivalve immunity.

Allam B., Raftos D. Immune Responses to Infectious Diseases in Bivalves. J. Invertebr. Pathol. 2015;131:121–136. doi: 10.1016/j.jip.2015.05.005. PubMed DOI

Luna-Acosta A., Breitwieser M., Renault T., Thomas-Guyon H. Recent Findings on Phenoloxidases in Bivalves. Mar. Pollut. Bull. 2017;122:5–16. doi: 10.1016/j.marpolbul.2017.06.031. PubMed DOI

Pinsino A. Sea Urchin Immune Cells as Sentinels of Environmental Stress. Dev. Comp. Immunol. 2015;49:198–205. doi: 10.1016/j.dci.2014.11.013. PubMed DOI

Smith L.C., Arizza V., Hudgell M.A.B., Barone G., Bodnar A.G., Buckley K.M., Cunsolo V., Dheilly N.M., Franchi N., Fugmann S.D., et al. Echinodermata: The complex immune system in echinoderms. In: Cooper E.L., editor. Advances in Comparative Immunology. Springer International Publishing AG; New York, NY, USA: 2018. pp. 409–501.

Sea Urchin Genome Sequencing Consortium The Genome of the Sea Urchin Strongylocentrotus Purpuratus. Science. 2006;10:941–952. doi: 10.1126/science.1133609. PubMed DOI PMC

Rast J.P., Smith L.C., Loza-Coll M., Hibino T., Litman G.W. Genomic Insights into the Immune System of the Sea Urchin. Science. 2006;314:952–956. doi: 10.1126/science.1134301. PubMed DOI PMC

Lessons in Immunity: From Single Cell Organisms to Mammals. Academic Press; Cambridge, MA, USA: Elsevier Inc.; Amsterdam, The Netherlands: 2016. Echinoderm Antimicrobial peptides: The ancient arms of the Deuterostome inna immune system; pp. 145–153.

Schillaci D., Arizza V., Parrinello N., Di Stefano V., Fanara S., Muccilli V., Cunsolo V., Haagensen J.J.A., Molin S. Antimicrobial and Antistaphylococcal Biofilm Activity from the Sea Urchin Paracentrotus Lividus: Antimicrobial and Antistaphylococcal Biofilm Activity. J. Appl. Microbiol. 2010;108:17–24. doi: 10.1111/j.1365-2672.2009.04394.x. PubMed DOI

Alijagic A. Gold Nanoparticles Coated with Polyvinylpyrrolidone and Sea Urchin Extracellular Molecules Induce Transient Immune Activation. J. Hazard. Mater. 2021;402:123793. doi: 10.1016/j.jhazmat.2020.123793. PubMed DOI

Liu M.-C., Liao W.-Y., Buckley K.M., Yang S.Y., Rast J.P., Fugmann S.D. AID/APOBEC-like Cytidine Deaminases Are Ancient Innate Immune Mediators in Invertebrates. Nat. Commun. 2018;9:1948. doi: 10.1038/s41467-018-04273-x. PubMed DOI PMC

Chernecky C.C., Berger B.J. Laboratory Tests and Diagnostic Procedures-E-Book. Elsevier Health Science; St. Louis, MO, USA: 2012.

Tsou C.-L., Peters W., Si Y., Slaymaker S., Aslanian A.M., Weisberg S.P., Mack M., Charo I.F. Critical Roles for CCR2 and MCP-3 in Monocyte Mobilization from Bone Marrow and Recruitment to Inflammatory Sites. J. Clin. Investig. 2007;117:902–909. doi: 10.1172/JCI29919. PubMed DOI PMC

Italiani P. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front. Immunol. 2014;5:514. doi: 10.3389/fimmu.2014.00514. PubMed DOI PMC

Bain C.C., Bravo-Blas A., Scott C.L., Perdiguero E.G., Geissmann F., Henri S., Malissen B., Osborne L.C., Mowat A.M. Constant Replenishment from Circulating Monocytes Maintains the Macrophage Pool in Adult Intestine. Nat. Immunol. 2014;15:929–937. doi: 10.1038/ni.2967. PubMed DOI PMC

Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 Macrophages and the Th1/Th2 Paradigm. J. Immunol. 2000;164:6166–6173. doi: 10.4049/jimmunol.164.12.6166. PubMed DOI

Mosser D.M., Edwards J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008;8:958–969. doi: 10.1038/nri2448. PubMed DOI PMC

Hoppstädter J., Seif M., Dembek A., Cavelius C., Huwer H., Kraegeloh A., Kiemer A.K. M2 Polarization Enhances Silica Nanoparticle Uptake by Macrophages. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00055. PubMed DOI PMC

Medzhitov R., Preston-Hurlburt P., Janewayr C.A. A Human Homologue of the Drosophila Toll Protein Signals Activation of Adaptive Immunity. Nat. Cell Biol. 1997;388:4. doi: 10.1038/41131. PubMed DOI

Diebold S.S., Kaisho T., Hemmi H., Akira S. Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA. Science. 2004;303:4. doi: 10.1126/science.1093616. PubMed DOI

Peiser L., Mukhopadhyay S., Gordon S. Scavenger Receptors in Innate Immunity. Curr. Opin. Immunol. 2002;14:123–128. doi: 10.1016/S0952-7915(01)00307-7. PubMed DOI

Brown G.D., Taylor P.R., Reid D.M., Willment J.A., Williams D.L., Martinez-Pomares L., Wong S.Y.C., Gordon S. Dectin-1 Is A Major β-Glucan Receptor On Macrophages. J. Exp. Med. 2002;196:407–412. doi: 10.1084/jem.20020470. PubMed DOI PMC

Davis B.K., Wen H., Ting J.P.-Y. The Inflammasome NLRs in Immunity, Inflammation, and Associated Diseases. Annu. Rev. Immunol. 2011;29:707–735. doi: 10.1146/annurev-immunol-031210-101405. PubMed DOI PMC

Kato H., Takeuchi O., Sato S., Yoneyama M., Yamamoto M., Matsui K., Uematsu S., Jung A., Kawai T., Ishii K.J., et al. Differential Roles of MDA5 and RIG-I Helicases in the Recognition of RNA Viruses. Nat. Cell Biol. 2006;441:101–105. doi: 10.1038/nature04734. PubMed DOI

Martinon F. NLRs Join TLRs as Innate Sensors of Pathogens. Trends Immunol. 2005;26:447–454. doi: 10.1016/j.it.2005.06.004. PubMed DOI

Connor E.E., Mwamuka J., Gole A., Murphy C.J., Wyatt M.D. Gold Nanoparticles Are Taken Up by Human Cells but Do Not Cause Acute Cytotoxicity. Small. 2005;1:325–327. doi: 10.1002/smll.200400093. PubMed DOI

Barbero F., Moriones O.H., Bastús N.G., Puntes V. Dynamic Equilibrium in the Cetyltrimethylammonium Bromide–Au Nanoparticle Bilayer, and the Consequent Impact on the Formation of the Nanoparticle Protein Corona. Bioconjugate Chem. 2019;30:2917–2930. doi: 10.1021/acs.bioconjchem.9b00624. PubMed DOI

Li Y., Boraschi D. Endotoxin Contamination: A Key Element in the Interpretation of Nanosafety Studies. Nanomedicine. 2016;11:269–287. doi: 10.2217/nnm.15.196. PubMed DOI

Treuel L., Docter D., Maskos M., Stauber R.H. Protein Corona-from Molecular Adsorption to Physiological Complexity. Beilstein J. Nanotechnol. 2015;6:857–873. doi: 10.3762/bjnano.6.88. PubMed DOI PMC

Fleischer C.C., Payne C.K. Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Acc. Chem. Res. 2014;47:2651–2659. doi: 10.1021/ar500190q. PubMed DOI PMC

Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K.A. Nanoparticle Size and Surface Properties Determine the Protein Corona with Possible Implications for Biological Impacts. Proc. Natl. Acad. Sci. USA. 2008;105:14265–14270. doi: 10.1073/pnas.0805135105. PubMed DOI PMC

Casals E., Pfaller T., Duschl A., Oostingh G.J., Puntes V. Time Evolution of the Nanoparticle Protein Corona. ACS Nano. 2010;4:3623–3632. doi: 10.1021/nn901372t. PubMed DOI

Monopoli M.P., Walczyk D., Campbell A., Elia G., Lynch I., Baldelli Bombelli F., Dawson K.A. Physical−Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J. Am. Chem. Soc. 2011;133:2525–2534. doi: 10.1021/ja107583h. PubMed DOI

Tenzer S., Docter D., Kuharev J., Musyanovych A., Fetz V., Hecht R., Schlenk F., Fischer D., Kiouptsi K., Reinhardt C., et al. Rapid Formation of Plasma Protein Corona Critically Affects Nanoparticle Pathophysiology. Nat. Nanotech. 2013;8:772–781. doi: 10.1038/nnano.2013.181. PubMed DOI

Silvio D.D. Effect of Protein Corona Magnetite Nanoparticles Derived from Bread in Vitro Digestion on Caco-2 Cells Morphology and Uptake. Int. J. Biochem. 2016;75:212–222. doi: 10.1016/j.biocel.2015.10.019. PubMed DOI

Piella J., Bastús N.G., Puntes V. Size-Dependent Protein–Nanoparticle Interactions in Citrate-Stabilized Gold Nanoparticles: The Emergence of the Protein Corona. Bioconjugate Chem. 2017;28:88–97. doi: 10.1021/acs.bioconjchem.6b00575. PubMed DOI

Barbero F., Russo L., Vitali M., Piella J., Salvo I., Borrajo M.L., Busquets-Fité M., Grandori R., Bastús N.G., Casals E., et al. Formation of the Protein Corona: The Interface between Nanoparticles and the Immune System. Semin. Immunol. 2017;34:52–60. doi: 10.1016/j.smim.2017.10.001. PubMed DOI

Saha K., Rahimi M., Yazdani M., Kim S.T., Moyano D.F., Hou S., Das R., Mout R., Rezaee F., Mahmoudi M., et al. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona. ACS Nano. 2016;10:4421–4430. doi: 10.1021/acsnano.6b00053. PubMed DOI PMC

Hayashi Y., Miclaus T., Scavenius C., Kwiatkowska K., Sobota A. Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environ. Sci. Technol. 2013;47:14367–14375. doi: 10.1021/es404132w. PubMed DOI

Canesi L., Balbi T., Fabbri R., Salis A., Damonte G., Volland M., Blasco J. Biomolecular Coronas in Invertebrate Species: Implications in the Environmental Impact of Nanoparticles. NanoImpact. 2017;8:89–98. doi: 10.1016/j.impact.2017.08.001. DOI

Marques-Santos L.F., Grassi G., Bergami E., Faleri C., Balbi T., Salis A., Damonte G., Canesi L., Corsi I. Cationic Polystyrene Nanoparticle and the Sea Urchin Immune System: Biocorona Formation, Cell Toxicity, and Multixenobiotic Resistance Phenotype. Nanotoxicology. 2018;12:847–867. doi: 10.1080/17435390.2018.1482378. PubMed DOI

Grassi G., Landi C., Della Torre C., Bergami E., Bini L., Corsi I. Proteomic Profile of the Hard Corona of Charged Polystyrene Nanoparticles Exposed to Sea Urchin Paracentrotus Lividus Coelomic Fluid Highlights Potential Drivers of Toxicity. Environ. Sci. Nano. 2019;6:2937–2947. doi: 10.1039/C9EN00824A. DOI

Mueller N.C., Nowack B. Exposure Modeling of Engineered Nanoparticles in the Environment. Environ. Sci. Technol. 2008;42:4447–4453. doi: 10.1021/es7029637. PubMed DOI

Nowack B. Nanosilver Revisited Downstream. Science. 2010;330:1054–1055. doi: 10.1126/science.1198074. PubMed DOI

Nowack B., Krug H.F., Height M. 120 Years of Nanosilver History: Implications for Policy Makers. Policy Anal. 2011;45:1177–1183. PubMed

Dale A.L., Casman E.A., Lowry G.V., Lead J.R., Viparelli E., Baalousha M. Modeling Nanomaterial Environmental Fate in Aquatic Systems. Environ. Sci. Technol. 2015;49:2587–2593. doi: 10.1021/es505076w. PubMed DOI

Nasser F., Constantinou J., Lynch I. Nanomaterials in the Environment Acquire an “Eco-Corona” Impacting Their Toxicity to Daphnia Magna—A Call for Updating Toxicity Testing Policies. Proteomics. 2020;20:1800412. doi: 10.1002/pmic.201800412. PubMed DOI

Saavedra J., Stoll S., Slaveykova V.I. Influence of Nanoplastic Surface Charge on Eco-Corona Formation, Aggregation and Toxicity to Freshwater Zooplankton. Environ. Pollut. 2019;252:715–722. doi: 10.1016/j.envpol.2019.05.135. PubMed DOI

Barbero F., Mayall C., Drobne D., Saiz-Poseu J., Bastús N.G., Puntes V. Formation and Evolution of the Nanoparticle Environmental Corona: The Case of Au and Humic Acid. Sci. Total Environ. 2021;768:144792. doi: 10.1016/j.scitotenv.2020.144792. PubMed DOI

Batley G.E., Kirby J.K., Mclaughlin M.J. Fate and Risks of Nanomaterials in Aquatic and Terrestrial Environments. Accounts Chem. Res. 2013;46:854–862. doi: 10.1021/ar2003368. PubMed DOI

Nowack B., Rose J. Potential Scenarios for Nanomaterial Release and Subsequent Alteration in the Environment. Environ. Toxicol. Chem. 2011;31:50–59. doi: 10.1002/etc.726. PubMed DOI

Peijnenburg W.J.G.M., Baalousha M., Chen J., Chaudry Q., Von der kammer F., Kuhlbusch T.A.J., Lead J., Nickel C., Quik J.T.K., Renker M., et al. A Review of the Properties and Processes Determining the Fate of Engineered Nanomaterials in the Aquatic Environment. Crit. Rev. Environ. Sci. Technol. 2015;45:2084–2134. doi: 10.1080/10643389.2015.1010430. DOI

Svendsen C., Spurgeon D.J., Hankard P.K., Weeks J.M. A Review of Lysosomal Membrane Stability Measured by Neutral Red Retention: Is It a Workable Earthworm Biomarker? Ecotoxicol. Environ. Saf. 2004;57:20–29. doi: 10.1016/j.ecoenv.2003.08.009. PubMed DOI

Eyambe G.S., Goven A.J., Fitzpatrick L.C., Venables B.J., Cooper E.L. A Non-Invasive Technique for Sequential Collection of Earthworm (Lumbricus Terrestris) Leukocytes during Subchronic Immunotoxicity Studies. Lab. Anim. 1991;25:61–67. doi: 10.1258/002367791780808095. PubMed DOI

Garcia-Velasco N. Selection of an Optimal Culture Medium and the Most Responsive Viability Assay to Assess AgNPs Toxicity with Primary Cultures of Eisenia Fetida Coelomocytes. Ecotoxicol. Environ. Saf. 2019;183:109545. doi: 10.1016/j.ecoenv.2019.109545. PubMed DOI

Yang Y., Xiao Y., Li M., Ji F., Hu C., Cui Y. Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS ONE. 2017;12:e0170092. doi: 10.1371/journal.pone.0170092. PubMed DOI PMC

Hayashi Y. Time-Course Profiling of Molecular Stress Responses to Silver Nanoparticles in the Earthworm Eisenia Fetida. Ecotoxicol. Environ. Saf. 2013;98:219–226. doi: 10.1016/j.ecoenv.2013.08.017. PubMed DOI

Semerad J., Pacheco N.I.N., Grasserova A., Prochazkova P., Pivokonsky M., Pivokonska L., Cajthaml T. In Vitro Study of the Toxicity Mechanisms of Nanoscale Zero-Valent Iron (NZVI) and Released Iron Ions Using Earthworm Cells. Nanomaterials. 2020;10:2189. doi: 10.3390/nano10112189. PubMed DOI PMC

Pacheco N.I.N., Roubalova R., Semerad J., Grasserova A., Benada O., Kofronova O., Cajthaml T., Dvorak J., Bilej M., Prochazkova P. In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. Nanomaterials. 2021;11:250. doi: 10.3390/nano11010250. PubMed DOI PMC

Swart E., Dvorak J., Hernádi S., Goodall T., Kille P., Spurgeon D., Svendsen C., Prochazkova P. The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. Nanomaterials. 2020;10:1337. doi: 10.3390/nano10071337. PubMed DOI PMC

Dolar A. Modulations of Immune Parameters Caused by Bacterial and Viral Infections in the Terrestrial Crustacean Porcellio Scaber: Implications for Potential Markers in Environmental Research. Dev. Comp. Immunol. 2020;113:103789. doi: 10.1016/j.dci.2020.103789. PubMed DOI

Canesi L., Ciacci C., Balbi T. Invertebrate Models for Investigating the Impact of Nanomaterials on Innate Immunity: The Example of the Marine Mussel Mytilus spp. CBNT. 2017;2:77–83. doi: 10.2174/2213529402666160601102529. DOI

Barrick A., Guillet C., Mouneyrac C., Châtel A. Investigating the Establishment of Primary Cultures of Hemocytes from Mytilus Edulis. Cytotechnology. 2018;70:1205–1220. doi: 10.1007/s10616-018-0212-x. PubMed DOI PMC

Katsumiti A., Tomovska R., Cajaraville M.P. Intracellular Localization and Toxicity of Graphene Oxide and Reduced Graphene Oxide Nanoplatelets to Mussel Hemocytes in Vitro. Aquat. Toxicol. 2017;188:138–147. doi: 10.1016/j.aquatox.2017.04.016. PubMed DOI

Sendra M., Volland M., Balbi T., Fabbri R., Yeste M.P., Gatica J.M., Canesi L., Blasco J. Cytotoxicity of CeO2 Nanoparticles Using in Vitro Assay with Mytilus Galloprovincialis Hemocytes: Relevance of Zeta Potential, Shape and Biocorona Formation. Aquat. Toxicol. 2018;200:13–20. doi: 10.1016/j.aquatox.2018.04.011. PubMed DOI

Balbi T., Fabbri R., Montagna M., Camisassi G., Canesi L. Seasonal Variability of Different Biomarkers in Mussels (Mytilus Galloprovincialis) Farmed at Different Sites of the Gulf of La Spezia, Ligurian Sea, Italy. Mar. Pollut. Bull. 2017;116:348–356. doi: 10.1016/j.marpolbul.2017.01.035. PubMed DOI

Katsumiti A., Gilliland D., Arostegui I., Cajaraville M.P. Cytotoxicity and Cellular Mechanisms Involved in the Toxicity of CdS Quantum Dots in Hemocytes and Gill Cells of the Mussel Mytilus Galloprovincialis. Aquat. Toxicol. 2014;153:39–52. doi: 10.1016/j.aquatox.2014.02.003. PubMed DOI

Canesi L., Auguste M., Bebianno M.J. Sublethal Effects of Nanoparticles on Aquatic Invertebrates, from Molecular to Organism Level. In: Blasco J., Corsi I., editors. Ecotoxicology of Nanoparticles in Aquatic Systems. CRC Press; Boca Raton, FL, USA: 2019. pp. 38–61.

Kádár E., Lowe D.M., Solé M., Fisher A.S., Jha A.N., Readman J.W., Hutchinson T.H. Uptake and Biological Responses to Nano-Fe versus Soluble FeCl3 in Excised Mussel Gills. Anal. Bioanal. Chem. 2010;396:657–666. doi: 10.1007/s00216-009-3191-0. PubMed DOI

Pinsino A., Alijagic A. Sea Urchin Paracentrotus Lividus Immune Cells in Culture: Formulation of the Appropriate Harvesting and Culture Media and Maintenance Conditions. Biol. Open. 2019;8:7. doi: 10.1242/bio.039289. PubMed DOI PMC

Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofronova O., Pinsino A. Titanium Dioxide Nanoparticles Temporarily Influence the Sea Urchin Immunological State Suppressing Inflammatory-Relate Gene Transcription and Boosting Antioxidant Metabolic Activity. J. Hazard. Mater. 2020;11 doi: 10.1016/j.jhazmat.2019.121389. PubMed DOI

Nurnberger T., Brunner F., Kemmerling B., Piater L. Innate Immunity in Plants and Animals: Striking Similarities and Obvious Differences. Immunol. Rev. 2004;198:249–266. doi: 10.1111/j.0105-2896.2004.0119.x. PubMed DOI

Michelini S., Barbero F., Prinelli A., Steiner P., Weiss R., Verwanger T., Andosch A., Lütz-Meindl U., Puntes V.F., Drobne D., et al. Gold Nanoparticles (AuNPs) Impair LPS-Driven Immune Responses by Promoting a Tolerogenic-like Dendritic Cell Phenotype with Altered Endosomal Structures. Nanoscale. 2021 doi: 10.1039/D0NR09153G. PubMed DOI PMC

Koeffler H.P. Human Myeloid Leukemia Cell Lines: A Review. Blood. 1980;56:344–350. doi: 10.1182/blood.V56.3.344.344. PubMed DOI

Kroll A., Pillukat M.H., Hahn D., Schnekenburger J. Current in Vitro Methods in Nanoparticle Risk Assessment: Limitations and Challenges. Eur. J. Pharm. Biopharm. 2009;72:370–377. doi: 10.1016/j.ejpb.2008.08.009. PubMed DOI

Pott G., Chan E., Dinarello C.A., Shapiro L. A-1-Antitrypsin Is an Endogenous Inhibitor of Proinflammatory Cytokine Production in Whole Blood. J. Leukoc. Biol. 2009;85:11. doi: 10.1189/jlb.0208145. PubMed DOI PMC

Beguin Y., Noizat-Pirenne F., Pirenne J., Gathy R., Dehart I., Igot D., Baudrihaye M., Delacroix D., Franchimontl P. Direct stimulation of cytokines (il-lp, tnf-a, il-6, il-2, ifn-y and gm-csf) in whole blood. I. Comparison with isolated pbmc stimulation. Cytokine. 1992;4:239–248. PubMed

Kiertscher S.M., Roth M.D. Human CD14 + Leukocytes Acquire the Phenotype and Function of Antigen-Presenting Dendritic Cells When Cultured in GM-CSF and IL-4. J. Leukoc. Biol. 1996;59:208–218. doi: 10.1002/jlb.59.2.208. PubMed DOI

Pfeiffer I.A. Leukoreduction System Chambers Are an Efficient, Valid, and Economic Source of Functional Monocyte-Derived Dendritic Cells and Lymphocytes. Immunobiology. 2013;218:1392–1401. doi: 10.1016/j.imbio.2013.07.005. PubMed DOI

Arts R.J.W. BCG Vaccination Protects against Experimental Viral Infection in Humans through the Induction of Cytokines Associated with Trained Immunity. Cell Host Microbe. 2018;23:89–100.e5. doi: 10.1016/j.chom.2017.12.010. PubMed DOI

Pfaller T., Colognato R., Nelissen I., Favilli F., Casals E., Ooms D., Leppens H., Ponti J., Stritzinger R., Puntes V., et al. The Suitability of Different Cellular in Vitro Immunotoxicity and Genotoxicity Methods for the Analy. Nanotoxicology. 2010;4:52–72. doi: 10.3109/17435390903374001. PubMed DOI

Irvine D.J., Hanson M.C., Rakhra K., Tokatlian T. Synthetic Nanoparticles for Vaccines and Immunotherapy. Chem. Rev. 2015;115:11109–11146. doi: 10.1021/acs.chemrev.5b00109. PubMed DOI PMC

Siddiqui D.M.H., Al-Whaibi M.H., Mohammad F. Nanotechnology and Plant. Sciences: Nanoparticles and Their Impact on Plants. Springer; New York, NY, USA: Berlin/Heidelberg, Germany: 2015.

Ma X., Geiser-Lee J., Deng Y., Kolmakov A. Interactions between Engineered Nanoparticles (ENPs) and Plants: Phytotoxicity, Uptake and Accumulation. Sci. Total Environ. 2010;408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031. PubMed DOI

Koelmel J., Leland T., Wang H., Amarasiriwardena D., Xing B. Investigation of Gold Nanoparticles Uptake and Their Tissue Level Distribution in Rice Plants by Laser Ablation-Inductively Coupled-Mass Spectrometry. Environ. Pollut. 2013;174:222–228. doi: 10.1016/j.envpol.2012.11.026. PubMed DOI

Avellan A., Schwab F., Masion A., Chaurand P., Borschneck D., Vidal V., Rose J., Santaella C., Levard C. Nanoparticle Uptake in Plants: Gold Nanomaterial Localized in Roots of Arabidopsis Thaliana by X-Ray Computed Nanotomography and Hyperspectral Imaging. Environ. Sci. Technol. 2017;51:8682–8691. doi: 10.1021/acs.est.7b01133. PubMed DOI

Kolenčík M., Ernst D., Komár M., Urík M., Šebesta M., Dobročka E., Černý I., Illa R., Kanike R., Qian Y., et al. Effect of Foliar Spray Application of Zinc Oxide Nanoparticles on Quantitative, Nutritional, and Physiological Parameters of Foxtail Millet (Setaria Italica L.) under Field Conditions. Nanomaterials. 2019;9:1559. doi: 10.3390/nano9111559. PubMed DOI PMC

Al-Khaishany M.Y. Role of Nanoparticles in Plants. In: Siddiqui M.H., Al-Whaibi M.H., Mohammad F., editors. Nanotechnology and Plant Sciences. Springer International Publishing; Cham, Swizterland: 2015. pp. 19–35.

Hayashi Y., Miclaus T., Engelmann P., Autrup H., Sutherland D.S., Scott-Fordsmand J.J. Nanosilver Pathophysiology in Earthworms: Transcriptional Profiling of Secretory Proteins and the Implication for the Protein Corona. Nanotoxicology. 2016;10:303–331. doi: 10.3109/17435390.2015.1054909. PubMed DOI

Waalewijn-Kool P.L., Ortiz M.D. Effect of Different Spiking Procedures on the Distribution and Toxicity of ZnO Nanoparticles in Soil. Ecotoxicol. 2012;21:1797–1804. doi: 10.1007/s10646-012-0914-3. PubMed DOI PMC

Boraschi D., Oostingh G.J., Casals E., Italiani P., Nelissen I., Puntes V.F., Duschl A. Nano-Immunosafety: Issues in Assay Validation. J. Phys. Conf. Ser. 2011;304:9. doi: 10.1088/1742-6596/304/1/012077. DOI

Moret Y., Moreau J. The Immune Role of the Arthropod Exoskeleton. Invert. Surviv. J. 2012;9:200–206.

Mayall C., Dolar A., Jemec Kokalj A., Novak S., Razinger J., Barbero F., Puntes V., Drobne D. Stressor-Dependant Changes in Immune Parameters in the Terrestrial Isopod Crustacean, Porcellio Scaber: A Focus on Nanomaterials. Nanomaterials. 2021;11:934. doi: 10.3390/nano11040934. PubMed DOI PMC

Duroudier N., Katsumiti A., Mikolaczyk M., Schäfer J., Bilbao E., Cajaraville M.P. Dietary Exposure of Mussels to PVP/PEI Coated Ag Nanoparticles Causes Ag Accumulation in Adults and Abnormal Embryo Development in Their Offspring. Sci. Total Environ. 2019;655:48–60. doi: 10.1016/j.scitotenv.2018.11.181. PubMed DOI

Ward J.E., Kach D.J. Marine Aggregates Facilitate Ingestion of Nanoparticles by Suspension-Feeding Bivalves. Mar. Environ. Res. 2009;68:137–142. doi: 10.1016/j.marenvres.2009.05.002. PubMed DOI

Barmo C., Ciacci C., Canonico B., Fabbri R., Cortese K., Balbi T., Marcomini A., Pojana G., Gallo G., Canesi L. In Vivo Effects of N-TiO2 on Digestive Gland and Immune Function of the Marine Bivalve Mytilus Galloprovincialis. Aquat. Toxicol. 2013;132–133:9–18. doi: 10.1016/j.aquatox.2013.01.014. PubMed DOI

Auguste M. In Vivo Immunomodulatory and Antioxidant Properties of Nanoceria (NCeO2) in the Marine Mussel Mytilus Galloprovincialis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019;219:95–102. doi: 10.1016/j.cbpc.2019.02.006. PubMed DOI

Falugi C. Toxicity of Metal Oxide Nanoparticles in Immune Cells of the Sea Urchin. Mar. Environ. Res. 2012;76:114–121. doi: 10.1016/j.marenvres.2011.10.003. PubMed DOI

Pinsino A., Russo R., Bonaventura R., Brunelli A., Marcomini A., Matranga V. Titanium Dioxide Nanoparticles Stimulate Sea Urchin Immune Cell Phagocytic Activity Involving TLR/P38 MAPK-Mediated Signalling Pathway. Sci. Rep. 2015;5:14492. doi: 10.1038/srep14492. PubMed DOI PMC

Chivasa S., Ndimba B.K., Simon W.J., Lindsey K., Slabas A.R. Extracellular ATP Functions as an Endogenous External Metabolite Regulating Plant Cell Viability. Plant Cell. 2005;17:3019–3034. doi: 10.1105/tpc.105.036806. PubMed DOI PMC

Bigorgne E., Foucaud L., Caillet C., Giamberini L., Nahmani J., Thomas F., Rodius F. Cellular and Molecular Responses of E. Fetida Cœlomocytes Exposed to TiO2 Nanoparticles. J. Nanopart. Res. 2012;14:1–17. doi: 10.1007/s11051-012-0959-5. PubMed DOI

Oostingh G.J., Casals E., Italiani P., Colognato R., Stritzinger R., Ponti J., Pfaller T., Kohl Y., Ooms D., Favilli F., et al. Problems and Challenges in the Development and Validation of Human Cell-Based Assays to Determine Nanoparticle-Induced Immunomodulatory Effects. Part. Fibre Toxicol. 2011;8:8. doi: 10.1186/1743-8977-8-8. PubMed DOI PMC

Jones K., Kim D.W., Park J.S., Khang C.H. Live-Cell Fluorescence Imaging to Investigate the Dynamics of Plant Cell Death during Infection by the Rice Blast Fungus Magnaporthe Oryzae. BMC Plant Biol. 2016;16:69. doi: 10.1186/s12870-016-0756-x. PubMed DOI PMC

Huang C.-N., Cornejo M.J., Bush D.S., Jones R.L. Estimating Viability of Plant Protoplasts Using Double and Single Staining. Protoplasma. 1986;135:80–87. doi: 10.1007/BF01277001. DOI

Ciacci C., Canonico B., Bilaniĉovă D., Fabbri R., Cortese K., Gallo G., Marcomini A., Pojana G., Canesi L. Immunomodulation by Different Types of N-Oxides in the Hemocytes of the Marine Bivalve Mytilus Galloprovincialis. PLoS ONE. 2012;7:e36937. doi: 10.1371/journal.pone.0036937. PubMed DOI PMC

Moyen N.E., Bump P.A., Somero G.N., Denny M.W. Establishing Typical Values for Hemocyte Mortality in Individual California Mussels, Mytilus Californianus. Fish Shellfish Immunol. 2020;100:70–79. doi: 10.1016/j.fsi.2020.02.069. PubMed DOI

de Araújo R.F., Jr., de Araújo A.A., Pessoa J.B., Freire Neto F.P., da Silva G.R., Leitão Oliveira A.L., de Carvalho T.G., Silva H.F., Eugênio M., Sant’Anna C., et al. Anti-Inflammatory, Analgesic and Anti-Tumor Properties of Gold Nanoparticles. Pharmacol. Rep. 2017;69:12. doi: 10.1016/j.pharep.2016.09.017. PubMed DOI

Ikegawa H., Yamamoto Y., Matsumoto H. Cell Death Caused by a Combination of Aluminum and Iron in Cultured Tobacco Cells. Physiol. Plant. 1998;104:474–478. doi: 10.1034/j.1399-3054.1998.1040324.x. DOI

Katsumiti A., Gilliland D., Arostegui I., Cajaraville M.P. Mechanisms of Toxicity of Ag Nanoparticles in Comparison to Bulk and Ionic Ag on Mussel Hemocytes and Gill Cells. PLoS ONE. 2015;10:e0129039. doi: 10.1371/journal.pone.0129039. PubMed DOI PMC

Fernández-Bautista N., Domínguez-Núñez J., Moreno M.M., Berrocal-Lobo M. Plant Tissue Trypan Blue Staining During Phytopathogen Infection. Bio-Protocol. 2016;6 doi: 10.21769/BioProtoc.2078. DOI

Gupta S., Kushwah T., Yadav S. Earthworm Coelomocytes as Nanoscavenger of ZnO NPs. Nanoscale Res. Lett. 2014;9:259. doi: 10.1186/1556-276X-9-259. PubMed DOI PMC

Parisi M.G. Effects of Organic Mercury on Mytilus Galloprovincialis Hemocyte Function and Morphology. J. Comp. Physiol. B. 2021;191:143–158. doi: 10.1007/s00360-020-01306-0. PubMed DOI PMC

Murano C., Bergami E., Liberatori G., Palumbo A., Corsi I. Interplay Between Nanoplastics and the Immune System of the Mediterranean Sea Urchin Paracentrotus Lividus. Front. Mar. Sci. 2021;8:647394. doi: 10.3389/fmars.2021.647394. DOI

Karlsson H.L., Cronholm P., Gustafsson J., Moller L. Copper Oxide Nanoparticles Are Highly Toxic: A Comparison between Metal Oxide Nanoparticles and Carbon Nanotubes. Chem. Res. Toxicol. 2008;21:1726–1732. doi: 10.1021/tx800064j. PubMed DOI

Watanabe M., Setoguchi D., Uehara K., Ohtsuka W., Watanabe Y. Apoptosis-like Cell Death of Brassica Napus Leaf Protoplasts. New Phytol. 2002;156:417–426. doi: 10.1046/j.1469-8137.2000.00536.x. PubMed DOI

Wang H., Zhu X., Li H., Cui J., Liu C., Chen X., Zhang W. Induction of Caspase-3-like Activity in Rice Following Release of Cytochrome-f from the Chloroplast and Subsequent Interaction with the Ubiquitin-Proteasome System. Sci. Rep. 2015;4:5989. doi: 10.1038/srep05989. PubMed DOI PMC

Canesi L., Ciacci C., Bergami E., Monopoli M.P., Dawson K.A., Papa S., Canonico B., Corsi I. Evidence for Immunomodulation and Apoptotic Processes Induced by Cationic Polystyrene Nanoparticles in the Hemocytes of the Marine Bivalve Mytilus. Mar. Environ. Res. 2015;111:34–40. doi: 10.1016/j.marenvres.2015.06.008. PubMed DOI

Kumar G., Degheidy H., Casey B.J., Goering P.L. Flow Cytometry Evaluation of in Vitro Cellular Necrosis and Apoptosis Induced by Silver Nanoparticles. Food Chem. Toxicol. 2015;85:45–51. doi: 10.1016/j.fct.2015.06.012. PubMed DOI

Irizar A. Establishment of Toxicity Thresholds in Subpopulations of Coelomocytes (Amoebocytes vs. Eleocytes) of Eisenia Fetida Exposed in Vitro to a Variety of Metals: Implications for Biomarker Measurements. Ecotoxicology. 2015;24:1004–1013. doi: 10.1007/s10646-015-1441-9. PubMed DOI

Auguste M., Canesi L. Shift in Immune Parameters After Repeated Exposure to Nanoplastics in the Marine Bivalve Mytilus. Front. Immunol. 2020;11:11. doi: 10.3389/fimmu.2020.00426. PubMed DOI PMC

Rocha T.L., Gomes T., Cardoso C., Letendre J., Pinheiro J.P., Sousa V.S., Teixeira M.R., Bebianno M.J. Immunocytotoxicity, Cytogenotoxicity and Genotoxicity of Cadmium-Based Quantum Dots in the Marine Mussel Mytilus Galloprovincialis. Mar. Environ. Res. 2014;101:29–37. doi: 10.1016/j.marenvres.2014.07.009. PubMed DOI

Tomic S., Ðokic J., Vasilijic S., Ogrinc N., Rudolf R., Pelicon P., Vučević D., Milosavljevic P., Rupnik M.S., Friedrich B. Size-Dependent Effects of Gold Nanoparticles Uptake on Maturation and Antitumor Functions of Human Dendritic Cells In Vitro. PLoS ONE. 2014;9:e96584. doi: 10.1371/journal.pone.0096584. PubMed DOI PMC

Yan A., Chen Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. IJMS. 2019;20:1003. doi: 10.3390/ijms20051003. PubMed DOI PMC

Taylor A.F., Rylott E.L., Anderson C.W.N., Bruce N.C. Investigating the Toxicity, Uptake, Nanoparticle Formation and Genetic Response of Plants to Gold. PLoS ONE. 2014;9:e93793. doi: 10.1371/journal.pone.0093793. PubMed DOI PMC

Hayashi Y. Earthworms and Humans in Vitro: Characterizing Evolutionarily Conserved Stress and Immune Responses to Silver Nanoparticles. Environ. Sci. Technol. 2012;46:4166–4173. doi: 10.1021/es3000905. PubMed DOI

Auguste M., Mayall C., Barbero F., Hočevar M., Alberti S., Grassi G., Puntes V.F., Drobne D., Canesi L. Functional and Morphological Changes Induced in Mytilus Hemocytes by Selected Nanoparticles. Nanomaterials. 2021;11:470. doi: 10.3390/nano11020470. PubMed DOI PMC

Canesi L., Ciacci C., Fabbri R., Balbi T., Salis A., Damonte G., Cortese K., Caratto V., Monopoli M.P., Dawson K., et al. Interactions of Cationic Polystyrene Nanoparticles with Marine Bivalve Hemocytes in a Physiological Environment: Role of Soluble Hemolymph Proteins. Environ. Res. 2016;150:73–81. doi: 10.1016/j.envres.2016.05.045. PubMed DOI

Katsumiti A., Arostegui I., Oron M., Gilliland D., Valsami-Jones E., Cajaraville M.P. Cytotoxicity of Au, ZnO and SiO2 NPs Using in Vitro Assays with Mussel Hemocytes and Gill Cells: Relevance of Size, Shape and Additives. Nanotoxicology. 2015;10:185–193. doi: 10.3109/17435390.2015.1039092. PubMed DOI

Swartzwelter B.J., Barbero F., Verde A., Mangini M., Pirozzi M., Luca A.C.D., Puntes V.F., Leite L.C.C., Italiani P., Boraschi D. Gold Nanoparticles Modulate BCG-Induced Innate Immune Memory in Human Monocytes by Shifting the Memory Response towards Tolerance. Nanomaterials. 2019;9:1354. doi: 10.3390/cells9020284. PubMed DOI PMC

Kurepa J., Paunesku T., Vogt S., Arora H., Rabatic B.M., Lu J., Wanzer M.B., Woloschak G.E., Smalle J.A. Uptake and Distribution of Ultrasmall Anatase TiO2 Alizarin Red S Nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10:2296–2302. doi: 10.1021/nl903518f. PubMed DOI PMC

Timmers A.C.J., Tirlapur U.K., Schel J.H.N. Vacuolar Accumulation of Acridine Orange and Neutral Red in Zygotic and Somatic Embryos of Carrot (Daucus Carota L.) Protoplasma. 1995;188:236–244. doi: 10.1007/BF01280375. DOI

Weeks J.M., Svendsen C. Neutral Red Retention by Lysosomes from Earthworm (Lumbricus rubellus) Coelomocytes: A Simple Biomarker of Exposure to Soil Copper. Environ. Toxicol. Chem. 1996;15:1801–1805. doi: 10.1002/etc.5620151022. DOI

Long J. Internalization, Cytotoxicity, Oxidative Stress and Inflammation of Multi-Walled Carbon Nanotubes in Human Endothelial Cells: Influence of Pre-Incubation with Bovine Serum Albumin. RSC Adv. 2018;8:9253–9260. doi: 10.1039/C8RA00445E. PubMed DOI PMC

Liu Y., Schiff M., Czymmek K., Tallóczy Z., Levine B., Dinesh-Kumar S.P. Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response. Cell. 2005;121:567–577. doi: 10.1016/j.cell.2005.03.007. PubMed DOI

Patel S., Dinesh-Kumar S.P. Arabidopsis ATG6 Is Required to Limit the Pathogen-Associated Cell Death Response. Autophagy. 2008;4:20–27. doi: 10.4161/auto.5056. PubMed DOI

Auguste M. Effects of Nanosilver on Mytilus Galloprovincialis Hemocytes and Early Embryo Development. Aquat. Toxicol. 2018;203:107–116. doi: 10.1016/j.aquatox.2018.08.005. PubMed DOI

Borges J., Porto-Neto L., Mangiaterra M., Jensch-Junior B., da Silva J. Phagocytosis in Vitro and in Vivo in the Antarctic Sea Urchin Sterechinus Neumayeri at 0 °C. Polar Biol. 2002;25:891–897. doi: 10.1007/s00300-002-0431-6. DOI

Gustafson H.H., Holt-Casper D., Grainger D.W., Ghandehari H. Nanoparticle Uptake: The Phagocyte Problem. Nano Today. 2015;10:487–510. doi: 10.1016/j.nantod.2015.06.006. PubMed DOI PMC

Thwala M., Musee N., Sikhwivhilu L., Wepener V. The Oxidative Toxicity of Ag and ZnO Nanoparticles towards the Aquatic Plant Spirodela Punctuta and the Role of Testing Media Parameters. Environ. Sci. Processes Impacts. 2013;15:1830. doi: 10.1039/c3em00235g. PubMed DOI

Sharma P., Bhatt D., Zaidi M.G.H., Saradhi P.P., Khanna P.K., Arora S. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica Juncea. Appl. Biochem. Biotechnol. 2012;167:2225–2233. doi: 10.1007/s12010-012-9759-8. PubMed DOI

Moreira R., Romero A., Rey-Campos M., Pereiro P., Rosani U., Novoa B., Figueras A. Stimulation of Mytilus Galloprovincialis Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, MiRNomic, and Functional Responses. Front. Immunol. 2020;11:606102. doi: 10.3389/fimmu.2020.606102. PubMed DOI PMC

Magesky A., de Oliveira Ribeiro C.A., Beaulieu L., Pelletier É. Silver Nanoparticles and Dissolved Silver Activate Contrasting Immune Responses and Stress-Induced Heat Shock Protein Expression in Sea Urchin: Nanosilver and Dissolved Ag Effects in Sea Urchins. Environ. Toxicol. Chem. 2017;36:1872–1886. doi: 10.1002/etc.3709. PubMed DOI

Minai L., Yeheskely-Hayon D., Yelin D. High Levels of Reactive Oxygen Species in Gold Nanoparticle-Targeted Cancer Cells Following Femtosecond Pulse Irradiation. Sci. Rep. 2013;3:srep02146. doi: 10.1038/srep02146. PubMed DOI PMC

Shi J. Inflammatory Caspases Are Innate Immune Receptors for Intracellular LPS. Nat. Cell Biol. 2014;514:187–192. doi: 10.1038/nature13683. PubMed DOI

Reddy Pullagurala V.L., Adisa I.O., Rawat S., Kalagara S., Hernandez-Viezcas J.A., Peralta-Videa J.R., Gardea-Torresdey J.L. ZnO Nanoparticles Increase Photosynthetic Pigments and Decrease Lipid Peroxidation in Soil Grown Cilantro (Coriandrum Sativum) Plant Physiol. Biochem. 2018;132:120–127. doi: 10.1016/j.plaphy.2018.08.037. PubMed DOI

Capolupo M., Valbonesi P., Fabbri E. A Comparative Assessment of the Chronic Effects of Micro- and Nano-Plastics on the Physiology of the Mediterranean Mussel Mytilus Galloprovincialis. Nanomaterials. 2021;11:649. doi: 10.3390/nano11030649. PubMed DOI PMC

Paciorek P. Products of Lipid Peroxidation as a Factor in the Toxic Effect of Silver Nanoparticles. Materials. 2020;13:2460. doi: 10.3390/ma13112460. PubMed DOI PMC

Chen W., Provart N.J., Glazebrook J., Katagiri F., Chang H.-S., Eulgem T., Mauch F., Luan S., Zou G., Whitham S.A., et al. Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses. Plant Cell. 2002;14:559–574. doi: 10.1105/tpc.010410. PubMed DOI PMC

Tripathi D.K., Singh S., Singh S., Srivastava P.K., Singh V.P., Singh S., Prasad S.M., Singh P.K., Dubey N.K., Pandey A.C., et al. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol. Biochem. 2017;110:167–177. doi: 10.1016/j.plaphy.2016.06.015. PubMed DOI

Homa J., Zorska A., Wesolowski D., Chadzinska M. Dermal Exposure to Immunostimulants Induces Changes in Activity and Proliferation of Coelomocytes of Eisenia Andrei. J. Comp. Physiol. B. 2013;183:313–322. doi: 10.1007/s00360-012-0710-7. PubMed DOI PMC

Ma J.S., Kim W.J., Kim J.J., Kim T.J., Ye S.K., Song M.D., Kang H., Kim D.W., Moon W.K., Lee K.H. Gold Nanoparticles Attenuate LPS-Induced NO Production through the Inhibition of NF-ΚB and IFN-β/STAT1 Pathways in RAW264.7 Cells. Nitric Oxide. 2010;23:214–219. doi: 10.1016/j.niox.2010.06.005. PubMed DOI

Sakthivel M., Karthikeyan N., Palani P. Detection and analysis of lysozyme activity in some tuberous plants and calotropis procera’s latex. J. Phytol. 2010;2:65–72.

Fiołka M.J., Zagaja M.P., Hułas-Stasiak M., Wielbo J. Activity and Immunodetection of Lysozyme in Earthworm Dendrobaena Veneta (Annelida) J. Invertebr. Pathol. 2012;109:83–90. doi: 10.1016/j.jip.2011.10.002. PubMed DOI

Auguste M., Lasa A., Balbi T., Pallavicini A., Vezzulli L., Canesi L. Impact of Nanoplastics on Hemolymph Immune Parameters and Microbiota Composition in Mytilus Galloprovincialis. Mar. Environ. Res. 2020;159:105017. doi: 10.1016/j.marenvres.2020.105017. PubMed DOI

Shimizu M., Kohno S., Kagawa H., Ichise N. Lytic Activity and Biochemical Properties of Lysozyme in the Coelomic Fluid of the Sea UrchinStrongylocentrotus Intermedius. J. Invertebr. Pathol. 1999;73:214–222. doi: 10.1006/jipa.1998.4808. PubMed DOI

Pagliara P., Stabili L. Zinc Effect on the Sea Urchin Paracentrotus Lividus Immunological Competence. Chemosphere. 2012;89:563–568. doi: 10.1016/j.chemosphere.2012.05.052. PubMed DOI

Ragland S.A., Criss A.K. From Bacterial Killing to Immune Modulation: Recent Insights into the Functions of Lysozyme. PLoS Pathog. 2017;13:e1006512. doi: 10.1371/journal.ppat.1006512. PubMed DOI PMC

Dinarello C.A. Historical Insights into Cytokines. Eur. J. Immunol. 2007;37:S34–S45. doi: 10.1002/eji.200737772. PubMed DOI PMC

Smith-Garvin J.E., Koretzky G.A., Jordan M.S. T Cell Activation. Annu. Rev. Immunol. 2009;27:591–619. doi: 10.1146/annurev.immunol.021908.132706. PubMed DOI PMC

Procházková P., Silerova M., Stijlemans B., Dieu M., Halada P., Joskova R., Beschin A., De Baetselier P., Bilej M. Evidence for Proteins Involved in Prophenoloxidase Cascade Eisenia Fetida Earthworms. J. Comp. Physiol. B. 2006;176:581–587. doi: 10.1007/s00360-006-0081-z. PubMed DOI

Cheng Y. Identification and Characterization of Proteins with Phenoloxidase-like Activities in the Sea Urchin Strongylocentrotus Nudus. Fish Shellfish. Immunol. 2015;47:117–121. doi: 10.1016/j.fsi.2015.08.020. PubMed DOI

Kumar V., Guleria P., Kumar V., Yadav S.K. Gold Nanoparticle Exposure Induces Growth and Yield Enhancement in Arabidopsis Thaliana. Sci. Total Environ. 2013:462–468. doi: 10.1016/j.scitotenv.2013.05.018. PubMed DOI

Bergami E., Krupinski Emerenciano A., González-Aravena M., Cárdenas C.A., Hernández P., Silva J.R.M.C., Corsi I. Polystyrene Nanoparticles Affect the Innate Immune System of the Antarctic Sea Urchin Sterechinus Neumayeri. Polar Biol. 2019;42:743–757. doi: 10.1007/s00300-019-02468-6. DOI

Mincarelli L. Evaluation of Gene Expression of Different Molecular Biomarkers of Stress Response as an Effect of Copper Exposure on the Earthworm EIsenia Andrei. Ecotoxicology. 2019;28:938–948. doi: 10.1007/s10646-019-02093-3. PubMed DOI

Chan S.L., Mukasa T., Santelli E., Low L.Y., Pascual J. The Crystal Structure of a TIR Domain from Arabidopsis Thaliana Reveals a Conserved Helical Region Unique to Plants. Protein Sci. 2009 doi: 10.1002/pro.275. PubMed DOI PMC

Vasilichin V.A., Tsymbal S.A., Fakhardo A.F., Anastasova E.I., Marchenko A.S., Shtil A.A., Vinogradov V.V., Koshel E.I. Effects of Metal Oxide Nanoparticles on Toll-Like Receptor MRNAs in Human Monocytes. Nanomaterials. 2020;10:127. doi: 10.3390/nano10010127. PubMed DOI PMC

Iizasa S., Iizasa E., Matsuzaki S., Tanaka H., Kodama Y., Watanabe K., Nagano Y. Arabidopsis LBP/BPI Related-1 and -2 Bind to LPS Directly and Regulate PR1 Expression. Sci. Rep. 2016;6:27527. doi: 10.1038/srep27527. PubMed DOI PMC

OSPAR Background Document and Technical Annexes for Biological Effects Monitoring. [(accessed on 8 June 2021)];2013 Available online: https://mcc.jrc.ec.europa.eu/documents/OSPAR/OSPAR_CoordinatedEnvironmentalMonitoringProgramme_CEMP.pdf.

Conte C., Dal Poggetto G., Swartzwelter B., Esposito D., Ungaro F., Laurienzo P., Boraschi D., Quaglia F. Surface Exposure of PEG and Amines on Biodegradable Nanoparticles as a Strategy to Tune Their Interaction with Protein-Rich Biological Media. Nanomaterials. 2019;9:1354. doi: 10.3390/nano9101354. PubMed DOI PMC

Gautam A. Immunotoxicity of Copper Nanoparticle and Copper Sulfate in a Common Indian Earthworm. Ecotoxicol. Environ. Saf. 2018;148:620–631. doi: 10.1016/j.ecoenv.2017.11.008. PubMed DOI

Dvořák J., Mančíková V., Pižl V., Elhottová D., Šilerová M., Roubalová R., Škanta F., Procházková P., Bilej M. Microbial Environment Affects Innate Immunity in Two Closely Related Earthworm Species Eisenia Andrei and Eisenia Fetida. PLoS ONE. 2013;8:e79257. PubMed PMC

Dvořák J. Sensing Microorganisms in the Gut Triggers the Immune Response in Eisenia Andrei Earthworms. Dev. Comp. Immunol. 2016;57:67–74. doi: 10.1016/j.dci.2015.12.001. PubMed DOI

Bhattacharya K. Fundamentals of Qualitative Research A Practical Guide. Routledge; London, UK: 2017.

Banchereau J., Steinman R.M. Dendritic Cells and the Control of Immunity. Nature. 1998;392:245–252. doi: 10.1038/32588. PubMed DOI

Buffet P.-E., Richard M., Caupos F., Vergnoux A., Perrein-Ettajani H., Luna-Acosta A., Akcha F., Amiard J.-C., Amiard-Triquet C., Guibbolini M., et al. A Mesocosm Study of Fate and Effects of CuO Nanoparticles on Endobenthic Species (Scrobicularia Plana, Hediste Diversicolor) Environ. Sci. Technol. 2013:130110104824003. doi: 10.1021/es303513r. PubMed DOI

van Straalen N.M., Feder M.E. Ecological and Evolutionary Functional Genomics—How Can It Contribute to the Risk Assessment of Chemicals? Environ. Sci. Technol. 2012;46:3–9. doi: 10.1021/es2034153. PubMed DOI

Maleck K., Levine A., Eulgem T., Morgan A., Schmid J., Lawton K.A., Dietrich R.A. The Transcriptome of Arabidopsis Thaliana during Systemic Acquired Resistance. Nat. Genet. 2000;26:8. doi: 10.1038/82521. PubMed DOI

Détrée C., Gallardo-Escárate C. Single and Repetitive Microplastics Exposures Induce Immune System Modulation and Homeostasis Alteration in the Edible Mussel Mytilus Galloprovincialis. Fish Shellfish Immunol. 2018;83:52–60. doi: 10.1016/j.fsi.2018.09.018. PubMed DOI

Felice B.D., Parolini M. Can Proteomics Be Considered as a Valuable Tool to Assess the Toxicity of Nanoparticles in Marine Bivalves? J. Mar. Sci. Eng. 2020;8:1033. doi: 10.3390/jmse8121033. DOI

Duroudier N. Changes in Protein Expression in Mussels Mytilus Galloprovincialis Dietarily Exposed to PVP/PEI Coated Silver Nanoparticles at Different Seasons. Aquat. Toxicol. 2019;210:56–68. doi: 10.1016/j.aquatox.2019.02.010. PubMed DOI

Syu Y. Impacts of Size and Shape of Silver Nanoparticles on Arabidopsis Plant Growth and Gene Expression. Plant Physiol. Biochem. 2014;83:57–64. doi: 10.1016/j.plaphy.2014.07.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...