In Vitro Study of the Toxicity Mechanisms of Nanoscale Zero-Valent Iron (nZVI) and Released Iron Ions Using Earthworm Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910095
Ministry of Agriculture of the Czech Republic
67188
Horizon 2020
PubMed
33153039
PubMed Central
PMC7692149
DOI
10.3390/nano10112189
PII: nano10112189
Knihovny.cz E-zdroje
- Klíčová slova
- apoptosis, coelomocytes, earthworms, ferrous and ferric ions, lipid peroxidation, nanoecotoxicology, nanoscale zero-valent iron (nZVI), phagocytosis, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
During the last two decades, nanomaterials based on nanoscale zero-valent iron (nZVI) have ranked among the most utilized remediation technologies for soil and groundwater cleanup. The high reduction capacity of elemental iron (Fe0) allows for the rapid and cost-efficient degradation or transformation of many organic and inorganic pollutants. Although worldwide real and pilot applications show promising results, the effects of nZVI on exposed living organisms are still not well explored. The majority of the recent studies examined toxicity to microbes and to a lesser extent to other organisms that could also be exposed to nZVI via nanoremediation applications. In this work, a novel approach using amoebocytes, the immune effector cells of the earthworm Eisenia andrei, was applied to study the toxicity mechanisms of nZVI. The toxicity of the dissolved iron released during exposure was studied to evaluate the effect of nZVI aging with regard to toxicity and to assess the true environmental risks. The impact of nZVI and associated iron ions was studied in vitro on the subcellular level using different toxicological approaches, such as short-term immunological responses and oxidative stress. The results revealed an increase in reactive oxygen species production following nZVI exposure, as well as a dose-dependent increase in lipid peroxidation. Programmed cell death (apoptosis) and necrosis were detected upon exposure to ferric and ferrous ions, although no lethal effects were observed at environmentally relevant nZVI concentrations. The decreased phagocytic activity further confirmed sublethal adverse effects, even after short-term exposure to ferric and ferrous iron. Detection of sublethal effects, including changes in oxidative stress-related markers such as reactive oxygen species and malondialdehyde production revealed that nZVI had minimal impacts on exposed earthworm cells. In comparison to other works, this study provides more details regarding the effects of the individual iron forms associated with nZVI aging and the cell toxicity effects on the specific earthworms' immune cells that represent a suitable model for nanomaterial testing.
Zobrazit více v PubMed
Mueller N.C., Braun J., Bruns J., Cernik M., Rissing P., Rickerby D., Nowack B. Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environ. Sci. Pollut. Res. 2012;19:550–558. doi: 10.1007/s11356-011-0576-3. PubMed DOI
Pasinszki T., Krebsz M. Synthesis and application of zero-valent iron nanoparticles in water treatment, environmental remediation, catalysis, and their biological effects. Nanomaterials. 2020;10:917. doi: 10.3390/nano10050917. PubMed DOI PMC
Semerad J., Cajthaml T. Ecotoxicity and environmental safety related to nano-scale zerovalent iron remediation applications. Appl. Microbiol. Biotechnol. 2016;100:9809–9819. doi: 10.1007/s00253-016-7901-1. PubMed DOI
Kocur C.M., Chowdhury A.I., Sakulchaicharoen N., Boparai H.K., Weber K.P., Sharma P., Krol M.M., Austrins L., Peace C., Sleep B.E., et al. Characterization of nZVI mobility in a field scale test. Environ. Sci. Technol. 2014;48:2862–2869. doi: 10.1021/es4044209. PubMed DOI
Johnson R.L., Nurmi J.T., O’Brien Johnson G.S., Fan D., O’Brien Johnson R.L., Shi Z., Salter-Blanc A.J., Tratnyek P.G., Lowry G.V. Field-Scale Transport and Transformation of Carboxymethylcellulose-Stabilized Nano Zero-Valent Iron. Environ. Sci. Technol. 2013;47:1573–1580. doi: 10.1021/es304564q. PubMed DOI
Jang M.-H., Lim M., Hwang Y.S. Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ. Health Toxicol. 2014;29:e2014022. doi: 10.5620/eht.e2014022. PubMed DOI PMC
Lefevre E., Bossa N., Wiesner M.R., Gunsch C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI) Sci. Total Environ. 2016;565:889–901. doi: 10.1016/j.scitotenv.2016.02.003. PubMed DOI PMC
Sevcu A., El-Temsah Y.S., Filip J., Joner E.J., Bobcikova K., Cernik M. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms. Environ. Sci. Pollut. Res. 2017;24:21191–21202. doi: 10.1007/s11356-017-9699-5. PubMed DOI
El-Temsah Y.S., Sevcu A., Bobcikova K., Cernik M., Joner E.J. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil. Chemosphere. 2016;144:2221–2228. doi: 10.1016/j.chemosphere.2015.10.122. PubMed DOI
El-Temsah Y.S., Joner E.J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere. 2012;89:76–82. doi: 10.1016/j.chemosphere.2012.04.020. PubMed DOI
Liang J., Xia X.Q., Zhang W., Zaman W.Q., Lin K.F., Hu S.Q., Lin Z.F. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system. Environ. Sci. Pollut. Res. 2017;24:2507–2514. doi: 10.1007/s11356-016-8001-6. PubMed DOI
Liang J., Xia X.Q., Yuan L., Zhang W., Lin K.F., Zhou B.S., Hu S.Q. The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209) Environ. Pollut. 2018;237:784–791. doi: 10.1016/j.envpol.2017.10.130. PubMed DOI
Yoon H., Pangging M., Jang M.H., Hwang Y.S., Chang Y.S. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms. Ecotoxicol. Environ. Saf. 2018;163:436–443. doi: 10.1016/j.ecoenv.2018.07.099. PubMed DOI
Yirsaw B.D., Mayilswami S., Megharaj M., Chen Z.L., Naidu R. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types. Environ. Sci. Pollut. Res. 2016;23:9822–9831. doi: 10.1007/s11356-016-6193-4. PubMed DOI
Sevcu A., El-Temsah Y.S., Joner E.J., Cernik M. Oxidative Stress Induced in Microorganisms by Zero-valent Iron Nanoparticles. Microbes Environ. 2011;26:271–281. doi: 10.1264/jsme2.ME11126. PubMed DOI
Semerad J., Cvancarova M., Filip J., Kaslik J., Zlota J., Soukupova J., Cajthaml T. Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Chemosphere. 2018;213:568–577. doi: 10.1016/j.chemosphere.2018.09.029. PubMed DOI
Semerad J., Moeder M., Filip J., Pivokonsky M., Filipova A., Cajthaml T. Oxidative stress in microbes after exposure to iron nanoparticles: Analysis of aldehydes as oxidative damage products of lipids and proteins. Environ. Sci. Pollut. Res. 2019;26:33670–33682. doi: 10.1007/s11356-019-06370-w. PubMed DOI
Manerikar R.S., Apte A.A., Ghole V.S. In vitro and in vivo genotoxicity assessment of Cr(VI) using comet assay in earthworm coelomocytes. Environ. Toxicol. Pharmacol. 2008;25:63–68. doi: 10.1016/j.etap.2007.08.009. PubMed DOI
Hayashi Y., Engelmann P. Earthworm’s immunity in the nanomaterial world: New room, future challenges. Invertebr. Surviv. J. 2013;10:69–76.
Muangphra P., Kwankua W., Gooneratne R. Genotoxic effects of glyphosate or paraquat on earthworm coelomocytes. Environ. Toxicol. 2014;29:612–620. doi: 10.1002/tox.21787. PubMed DOI
Bunn K.E., Thompson H.M., Tarrant K.A. Effects of agrochemicals on the immune systems of earthworms. Bull. Environ. Contam. Toxicol. 1996;57:632–639. doi: 10.1007/s001289900237. PubMed DOI
Yang Y., Xiao Y., Li M., Ji F., Hu C., Cui Y. Evaluation of Complex Toxicity of Canbon Nanotubes and Sodium Pentachlorophenol Based on Earthworm Coelomocytes Test. PLoS ONE. 2017;12:e0170092. doi: 10.1371/journal.pone.0170092. PubMed DOI PMC
Hayashi Y., Engelmann P., Foldbjerg R., Szabo M., Somogyi I., Pollak E., Molnar L., Autrup H., Sutherland D.S., Scott-Fordsmand J., et al. Earthworms and Humans In Vitro: Characterizing Evolutionarily Conserved Stress and Immune Responses to Silver Nanoparticles. Environ. Sci. Technol. 2012;46:4166–4173. doi: 10.1021/es3000905. PubMed DOI
Bigorgne E., Foucaud L., Caillet C., Giamberini L., Nahmani J., Thomas F., Rodius F. Cellular and molecular responses of E. fetida coelomocytes exposed to TiO2 nanoparticles. J. Nanopart. Res. 2012;14:959. doi: 10.1007/s11051-012-0959-5. DOI
Wu S., Cajthaml T., Semerad J., Filipova A., Klementova M., Skala R., Vitkova M., Michalkova Z., Teodoro M., Wu Z., et al. Nano zero-valent iron aging interacts with the soil microbial community: A microcosm study. Environ. Sci. Nano. 2019;6:1189–1206. doi: 10.1039/C8EN01328D. DOI
Mangayayam M.C., Alonso-de-Linaje V., Dideriksen K., Tobler D.J. Effects of common groundwater ions on the transformation and reactivity of sulfidized nanoscale zerovalent iron. Chemosphere. 2020;249:126137. doi: 10.1016/j.chemosphere.2020.126137. PubMed DOI
Semerad J., Filip J., Sevcu A., Brumovsky M., Nguyen N.H.A., Miksicek J., Lederer T., Filipova A., Bohackova J., Cajthaml T. Environmental fate of sulfidated nZVI particles: The interplay of nanoparticle corrosion and toxicity during aging. Environ. Sci. Nano. 2020;7:1794–1806. doi: 10.1039/D0EN00075B. DOI
Kaslik J., Kolarik J., Filip J., Medrik I., Tomanec O., Petr M., Malina O., Zboril R., Tratnyek P.G. Nanoarchitecture of advanced core-shell zero-valent iron particles with controlled reactivity for contaminant removal. Chem. Eng. J. 2018;354:335–345. doi: 10.1016/j.cej.2018.08.015. DOI
Hayashi Y., Miclaus T., Scavenius C., Kwiatkowska K., Sobota A., Engelmann P., Scott-Fordsmand J.J., Enghild J.J., Sutherland D.S. Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environ. Sci. Technol. 2013;47:14367–14375. doi: 10.1021/es404132w. PubMed DOI
Keller A.A., Garner K., Miller R.J., Lenihan H.S. Toxicity of Nano-Zero Valent Iron to Freshwater and Marine Organisms. PLoS ONE. 2012;7:e43983. doi: 10.1371/journal.pone.0043983. PubMed DOI PMC
Kocur C.M., O’Carroll D.M., Sleep B.E. Impact of nZVI stability on mobility in porous media. J. Contam. Hydrol. 2013;145:17–25. doi: 10.1016/j.jconhyd.2012.11.001. PubMed DOI
O’Carroll D., Sleep B., Krol M., Boparai H., Kocur C. Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv. Water Resour. 2013;51:104–122. doi: 10.1016/j.advwatres.2012.02.005. DOI
Vidic J., Haque F., Guigner J.M., Vidy A., Chevalier C., Stankic S. Effects of Water and Cell Culture Media on the Physicochemical Properties of ZnMgO Nanoparticles and Their Toxicity toward Mammalian Cells. Langmuir. 2014;30:11366–11374. doi: 10.1021/la501479p. PubMed DOI
Uskokovic V., Huynh E., Wu V.M. Mimicking the transit of nanoparticles through the body: When the path determines properties at the destination. J. Nanopart. Res. 2020;22:184. doi: 10.1007/s11051-020-04892-w. DOI
Marquez A., Berger T., Feinle A., Husing N., Himly M., Duschl A., Diwald O. Bovine Serum Albumin Adsorption on TiO2 Colloids: The Effect of Particle Agglomeration and Surface Composition. Langmuir. 2017;33:2551–2558. doi: 10.1021/acs.langmuir.6b03785. PubMed DOI
Nurmi J.T., Tratnyek P.G., Sarathy V., Baer D.R., Amonette J.E., Pecher K., Wang C.M., Linehan J.C., Matson D.W., Penn R.L., et al. Characterization and properties of metallic iron nanoparticles: Spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 2005;39:1221–1230. doi: 10.1021/es049190u. PubMed DOI
He D., Ma J.X., Collins R.N., Waite T.D. Effect of structural transformation of nanoparticulate zero-valent iron on generation of reactive oxygen species. Environ. Sci. Technol. 2016;50:3820–3828. doi: 10.1021/acs.est.5b04988. PubMed DOI
Albanese A., Chan W.C.W. Effect of Gold Nanoparticle Aggregation on Cell Uptake and Toxicity. ACS Nano. 2011;5:5478–5489. doi: 10.1021/nn2007496. PubMed DOI
Katsumiti A., Thorley A.J., Arostegui I., Reip P., Valsami-Jones E., Tetley T.D., Cajaraville M.P. Cytotoxicity and cellular mechanisms of toxicity of CuO NPs in mussel cells in vitro and comparative sensitivity with human cells. Toxicol. In Vitro. 2018;48:146–158. doi: 10.1016/j.tiv.2018.01.013. PubMed DOI
Zhang L., Wu L.L., Si Y.B., Shu K.H. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE. 2018;13:e0209020. doi: 10.1371/journal.pone.0209020. PubMed DOI PMC
Bodo K., Ernszt D., Nemeth P., Engelmann P. Distinct immune- and defense-related molecular fingerprints in sepatated coelomocyte subsets of Eisenia andrei earthworms. Invertebr. Surviv. J. 2018;15:338–345.
Mosquera J., Garcia I., Liz-Marzan L.M. Cellular Uptake of Nanoparticles versus Small Molecules: A Matter of Size. Acc. Chem. Res. 2018;51:2305–2313. doi: 10.1021/acs.accounts.8b00292. PubMed DOI
Li M., Yang Y., Xie J.W., Xu G.H., Yu Y. In-vivo and in-vitro tests to assess toxic mechanisms of nano ZnO to earthworms. Sci. Total Environ. 2019;687:71–76. doi: 10.1016/j.scitotenv.2019.05.476. PubMed DOI
Oh E., Andrews K.J., Jeon B. Enhanced biofilm formation by ferrous and ferric iron through oxidative stress in Campylobacter jejuni. Front. Microbiol. 2018;9:1204. doi: 10.3389/fmicb.2018.01204. PubMed DOI PMC
Chen Q., Li J., Wu Y., Shen F., Yao M. Biological responses of Gram-positive and Gram-negative bacteria to nZVI (Fe0), Fe2+ and Fe3+ RSC Adv. 2013;3:13835–13842. doi: 10.1039/c3ra40570b. DOI
Keenan C.R., Goth-Goldstein R., Lucas D., Sedlak D.L. Oxidative Stress Induced by Zero-Valent Iron Nanoparticles and Fe(II) in Human Bronchial Epithelial Cells. Environ. Sci. Technol. 2009;43:4555–4560. doi: 10.1021/es9006383. PubMed DOI
Lee C., Kim J.Y., Lee W.I., Nelson K.L., Yoon J., Sedlak D.L. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 2008;42:4927–4933. doi: 10.1021/es800408u. PubMed DOI PMC
In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment