Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
309517
European Commission
TE01020218
Technologická Agentura České Republiky
FR-TI3/622
Ministerstvo Průmyslu a Obchodu
LO1305
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
28733821
DOI
10.1007/s11356-017-9699-5
PII: 10.1007/s11356-017-9699-5
Knihovny.cz E-zdroje
- Klíčová slova
- Bacteria, Earthworms, Ecotoxicity, Ostracods, Plants, Polychlorinated biphenyls, Remediation, Zero-valent iron nanoparticles and microparticles,
- MeSH
- Bacteria účinky léků MeSH
- korýši účinky léků MeSH
- látky znečišťující půdu toxicita MeSH
- nanočástice MeSH
- Oligochaeta účinky léků MeSH
- oxidace-redukce MeSH
- polychlorované bifenyly chemie MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí * MeSH
- železo chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- polychlorované bifenyly MeSH
- půda MeSH
- železo MeSH
Two types of nano-scale zero-valent iron (nZVI-B prepared by borohydride reduction and nZVI-T produced by thermal reduction of iron oxide nanoparticles in H2) and a micro-scale ZVI (mZVI) were compared for PCB degradation efficiency in water and soil. In addition, the ecotoxicity of nZVI-B and nZVI-T particles in treated water and soil was evaluated on bacteria, plants, earthworms, and ostracods. All types of nZVI and mZVI were highly efficient in degradation of PCBs in water, but had little degradation effect on PCBs in soil. Although nZVI-B had a significant negative impact on the organisms tested, treatment with nZVI-T showed no negative effect, probably due to surface passivation through controlled oxidation of the nanoparticles.
Zobrazit více v PubMed
Environ Health Perspect. 1993 Apr;100:259-68 PubMed
Sci Total Environ. 2013 Feb 15;445-446:237-60 PubMed
Environ Sci Technol. 2016 Jul 19;50(14 ):7658-70 PubMed
Chemosphere. 2014 Jun;104:184-9 PubMed
Environ Sci Technol. 2006 Oct 1;40(19):6085-90 PubMed
Chemosphere. 2016 Feb;144:2221-8 PubMed
J Environ Qual. 2001 Sep-Oct;30(5):1636-43 PubMed
Environ Sci Pollut Res Int. 2012 Feb;19(2):448-57 PubMed
Appl Environ Microbiol. 1986 Oct;52(4):751-7 PubMed
Sci Total Environ. 2016 Sep 15;565:889-901 PubMed
J Environ Manage. 2015 Mar 15;151:550-5 PubMed
Chemosphere. 2012 Sep;89(1):76-82 PubMed
Environ Pollut. 2009 Apr;157(4):1127-33 PubMed
Sci Total Environ. 2013 Jan 15;443:844-9 PubMed
Environ Sci Technol. 2010 May 1;44(9):3474-80 PubMed
Chemosphere. 2012 Feb;86(8):802-8 PubMed
Mar Pollut Bull. 2011;63(5-12):339-46 PubMed
Environ Sci Pollut Res Int. 2012 Feb;19(2):550-8 PubMed
J Hazard Mater. 2012 Apr 15;211-212:126-30 PubMed
Sci Total Environ. 2014 Jul 1;485-486:739-747 PubMed
Environ Sci Technol. 2004 Oct 1;38(19):5208-16 PubMed
Water Res. 2010 Apr;44(7):2360-70 PubMed
Chemosphere. 2007 Jan;66(6):1031-8 PubMed
Environ Sci Pollut Res Int. 2016 Feb;23 (3):2220-9 PubMed
Chemosphere. 2013 Jun;92(1):131-7 PubMed
Chemosphere. 2017 Sep;182:525-531 PubMed
Environ Sci Pollut Res Int. 2014 Apr;21(7):5201-10 PubMed
Microbes Environ. 2011;26(4):271-81 PubMed
Ecotoxicol Environ Saf. 2009 Mar;72(3):684-92 PubMed
J Colloid Interface Sci. 2014 Nov 1;433:189-95 PubMed
Adv Colloid Interface Sci. 2006 Jun 30;120(1-3):47-56 PubMed
Environ Sci Technol. 2010 May 1;44(9):3462-7 PubMed