The evolutionary fate of the horizontally transferred agrobacterial mikimopine synthase gene in the genera Nicotiana and Linaria

. 2014 ; 9 (11) : e113872. [epub] 20141124

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25420106

Few cases of spontaneously horizontally transferred bacterial genes into plant genomes have been described to date. The occurrence of horizontally transferred genes from the T-DNA of Agrobacterium rhizogenes into the plant genome has been reported in the genus Nicotiana and in the species Linaria vulgaris. Here we compare patterns of evolution in one of these genes (a gene encoding mikimopine synthase, mis) following three different events of horizontal gene transfer (HGT). As this gene plays an important role in Agrobacterium, and there are known cases showing that genes from pathogens can acquire plant protection function, we hypothesised that in at least some of the studied species we will find signs of selective pressures influencing mis sequence. The mikimopine synthase (mis) gene evolved in a different manner in the branch leading to Nicotiana tabacum and N. tomentosiformis, in the branch leading to N. glauca and in the genus Linaria. Our analyses of the genus Linaria suggest that the mis gene began to degenerate soon after the HGT. In contrast, in the case of N. glauca, the mis gene evolved under significant selective pressures. This suggests a possible role of mikimopine synthase in current N. glauca and its ancestor(s). In N. tabacum and N. tomentosiformis, the mis gene has a common frameshift mutation that disrupted its open reading frame. Interestingly, our results suggest that in spite of the frameshift, the mis gene could evolve under selective pressures. This sequence may still have some regulatory role at the RNA level as suggested by coverage of this sequence by small RNAs in N. tabacum.

Zobrazit více v PubMed

Vogan AA, Higgs PG (2011) The advantages and disadvantages of horizontal gene transfer and the emergence of the first species. Biol Direct 6:1 10.1186/1745-6150-6-1 PubMed DOI PMC

Juhas M (2013) Horizontal gene transfer in human pathogens. Crit Rev Microbiol: [Epub ahead of print]. PubMed

Boto L (2010) Horizontal gene transfer in evolution: facts and challenges. Proc Biol Sci 277:819–827 10.1098/rspb.2009.1679 PubMed DOI PMC

Park C, Zhang J (2012) High expression hampers horizontal gene transfer. Genome Biol Evol 4:523–532. PubMed PMC

Schönknecht G, Chen W-H, Ternes CM, Barbier GG, Shrestha RP, et al. (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339:1207–1210. PubMed

Marraffini LA, Sontheimer EJ (2010) CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat Rev Genet 11:181–190. PubMed PMC

Westra ER, Buckling A, Fineran PC (2014) CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326. PubMed

Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618 10.1038/nrg2386 PubMed DOI

Ros VID, Hurst GDD (2009) Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant? BMC Biol 7:20 10.1186/1741-7007-7-20 PubMed DOI PMC

Talianova M, Janousek B (2011) What can we learn from tobacco and other Solanaceae about horizontal DNA transfer? Am J Bot 98:1231–1242 10.3732/ajb.1000370 PubMed DOI

Danchin ÉGJ (2011) What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals. Mob Genet Elements 1:269–273 10.4161/mge.18776 PubMed DOI PMC

Yue J, Hu X, Sun H, Yang Y, Huang J (2012) Widespread impact of horizontal gene transfer on plant colonization of land. Nat Commun 3:1152. PubMed PMC

Rice DW, Alverson AJ, Richardson AO, Young GJ, Sanchez-Puerta MV, et al. (2013) Horizontal transfer of entire genomes via mitochondrial fusion in the angiosperm Amborella. Science 342:1468–1473. PubMed

Zhaxybayeva O, Doolittle WF (2011) Lateral gene transfer. Curr Biol 21:R242–R246 10.1016/j.cub.2011.01.045 PubMed DOI

Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7:e35968. PubMed PMC

Acuña R, Padilla BE, Flórez-Ramos CP, Rubio JD, Herrera JC, et al. (2012) Adaptive horizontal transfer of a bacterial gene to an invasive insect pest of coffee. Proc Natl Acad Sci U S A 109:4197–4202. PubMed PMC

Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627 10.1126/science.1187113 PubMed DOI

Marcet-Houben M, Gabaldón T (2010) Acquisition of prokaryotic genes by fungal genomes. Trends Genet 26:5–8 10.1016/j.tig.2009.11.007 PubMed DOI

Woolfit M, Iturbe-Ormaetxe I, McGraw EA, O'Neill SL (2009) An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. Mol Biol Evol 26:367–374. PubMed

Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775–787. PubMed

Matveeva T V, Bogomaz DI, Pavlova O a, Nester EW, Lutova L a (2012) Horizontal gene transfer from genus agrobacterium to the plant linaria in nature. Mol Plant Microbe Interact 25:1542–1551. PubMed

Subramoni S, Nathoo N, Klimov E, Yuan Z-C (2014) Agrobacterium tumefaciens responses to plant-derived signaling molecules. Plant-Microbe Interact 5:322. Available: http://journal.frontiersin.org/Journal/10.3389/fpls.2014.00322/full, doi:10.3389/fpls.2014.00322 PubMed DOI PMC

Wilms I, Voss B, Hess WR, Leichert LI, Narberhaus F (2011) Small RNA-mediated control of the Agrobacterium tumefaciens GABA binding protein. Mol Microbiol 80:492–506. PubMed

Guyon P, Petit A, Tempé J, Dessaux Y (1993) Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria. Mol Plant-Microbe Interact 6:92–93.

Krimi Z, Petit A, Mougel C, Dessaux Y, Nesme X (2002) Seasonal Fluctuations and Long-Term Persistence of Pathogenic Populations of Agrobacterium spp. in Soils. Appl Environ Microbiol 68:3358–3365. PubMed PMC

Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, et al. (2013) GenBank. Nucleic Acids Res 41:D36–42. PubMed PMC

Barrett T, Troup DB, Wilhite SE, Ledoux P, Evangelista C, et al. (2011) NCBI GEO: archive for functional genomics data sets–10 years on. Nucleic Acids Res 39:D1005–10. PubMed PMC

Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive. Nucleic Acids Res 39:D19–21. PubMed PMC

Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591 10.1093/molbev/msm088 PubMed DOI

Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. PubMed PMC

Gouy M, Guindon S, Gascuel O (2010) SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27:221–224 10.1093/molbev/msp259 PubMed DOI

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 10.1093/sysbio/syq010 PubMed DOI

Zwickl D J (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Available: http://molevol.lysine.umiacs.umd.edu/molevolfiles/garli/zwicklDissertation.pdf.

Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574. PubMed

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. PubMed PMC

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. PubMed PMC

Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. PubMed

Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772. PubMed PMC

Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, et al. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321. PubMed

Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst Biol 55:539–552. PubMed

Sukumaran J, Holder MT (2010) DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571. PubMed

Rambaut A, Suchard MA, Xie D, Drummond AJ (2013) Tracer v1.5. Available: http://beast.bio.ed.ac.uk/Tracer. Accessed 25 March 2013.

Blanco-Pastor JL, Vargas P, Pfeil BE (2012) Coalescent simulations reveal hybridization and incomplete lineage sorting in Mediterranean Linaria. PLoS One 7:e39089. PubMed PMC

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973. PubMed PMC

Rambaut A (2012) FigTree v1.4.0. Available: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 11 November 2014.

Bouckaert RR (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics 26:1372–1373. PubMed

Swofford DL (2002) PAUP*, Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland, MA.

Shimodaira H, Hasegawa M (2001) CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247. PubMed

Shimodaira H (2002) An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508 10.1080/10635150290069913 PubMed DOI

Nye TMW, Liò P, Gilks WR (2006) A novel algorithm and web-based tool for comparing two alternative phylogenetic trees. Bioinformatics 22:117–119. PubMed

Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS (2009) Molecular decay of the tooth gene Enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 5:e1000634. PubMed PMC

Palmieri N, Kosiol C, Schlötterer C (2014) The life cycle of Drosophila orphan genes. Elife 3:e01311. PubMed PMC

Kubat Z, Zluvova J, Vogel I, Kovacova V, Cermak T, et al. (2014) Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol 202:662–678. PubMed

Zhang J, Nielsen R, Yang Z (2005) Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol 22:2472–2479. PubMed

Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872. PubMed

Wilson EB (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209–212.

Goecks J, Nekrutenko A, Taylor J (2010) Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 11:R86. PubMed PMC

Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, et al.. (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19: Unit 19.10.1–21. Available: http://www.ncbi.nlm.nih.gov/pubmed/20069535. Accessed 22 January 2014. PubMed PMC

Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, et al. (2005) Galaxy: a platform for interactive large-scale genome analysis. Genome Res 15:1451–1455. PubMed PMC

Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC (2011) Adaptive seeds tame genomic sequence comparison. Genome Res 21:487–493. PubMed PMC

Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter 11: Unit 11.7. PubMed PMC

Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. PubMed PMC

Stiller J, Martirani L, Tuppale S, Chian R-J, Chiurazzi M, et al. (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357–1365.

Chen L-H, Hata T, Yamaka Y, Suzuki Y (1995) The effects of preservation temperatures and periods on hairy roots inducing ability of Agrobacterium rhizogenes. Plant Tissue Cult Lett 12:94–96.

Daimon H, Fukami M, Mii M (1984) Hairy Root Formation in Peanut by the Wild Type Strains of Agrobacterium rhizogenes. Plant tissue Cult Lett 7:31–34.

Ye D, Installe P, Ciupercescu D, Veuskens J, Wu Y, et al. (1990) Sex determination in the dioecious Melandrium. I. lessons from androgenic haploids. Sex Plant Reprod 3:179–186.

Sierro N, Battey JND, Ouadi S, Bakaher N, Bovet L, et al. (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833. PubMed PMC

Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S, et al. (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60. PubMed PMC

Mohajjel-Shoja H, Clément B, Perot J, Alioua M, Otten L (2011) Biological activity of the Agrobacterium rhizogenes-derived trolC gene of Nicotiana tabacum and its functional relation to other plast genes. Mol Plant Microbe Interact 24:44–53. PubMed

Matveeva T V, Bogomaz DI, Pavlova OA, Nester EW, Lutova LA (2012) Horizontal gene transfer from genus agrobacterium to the plant linaria in nature. Mol Plant Microbe Interact 25:1542–1551. PubMed

Fernández-Mazuecos M, Vargas P (2011) Historical isolation versus recent long-distance connections between Europe and Africa in bifid toadflaxes (Linaria sect. Versicolores). PLoS One 6:e22234 10.1371/journal.pone.0022234 PubMed DOI PMC

Bulgakov VP, Aminin DL, Shkryl YN, Gorpenchenko TY, Veremeichik GN, et al. (2008) Suppression of reactive oxygen species and enhanced stress tolerance in Rubia cordifolia cells expressing the rolC oncogene. Mol Plant Microbe Interact 21:1561–1570 10.1094/MPMI-21-12-1561 PubMed DOI

Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J 32:775–787. PubMed

Sauerwein M, Wink M (1993) On the Role of opines in plants Transformed with Agrobacterium rhizogenes: Tropane Alkaloid Metabolism, Insect-Toxicity and Allelopathic Properties. J Plant Physiol 142:446–451.

Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat Biotechnol 15:369–372 10.1038/nbt0497-369 PubMed DOI

Savka MA, Farrand SK (1997) Modification of rhizobacterial populations by engineering bacterium utilization of a novel plant-produced resource. Nat Biotechnol 15:363–368 10.1038/nbt0497-363 PubMed DOI

Murad L, Lim KY, Christopodulou V, Matyasek R, Lichtenstein CP, et al. (2002) The origin of tobacco's T genome is traced to a particular lineage within Nicotiana tomentosiformis (Solanaceae). Am J Bot 89:921–928. PubMed

Clarkson JJ, Lim KY, Kovarik A, Chase MW, Knapp S, et al. (2005) Long-term genome diploidization in allopolyploid Nicotiana section Repandae (Solanaceae). New Phytol 168:241–252. PubMed

Clarkson JJ, Kelly LJ, Leitch AR, Knapp S, Chase MW (2010) Nuclear glutamine synthetase evolution in Nicotiana: phylogenetics and the origins of allotetraploid and homoploid (diploid) hybrids. Mol Phylogenet Evol 55:99–112. PubMed

Kovarik A, Renny-Byfield S, Grandbastien M-A, Leitch AR (2012) Evolutionary Implications of Genome and Karyotype Restructuring in Nicotiana tabacum L. In: Soltis P, Soltis DE, editors. Polyploidy and Genome Evolution. Berlin: Springer. pp. 209–225.

Escobar MA, Civerolo EL, Summerfelt KR, Dandekar AM (2001) RNAi-mediated oncogene silencing confers resistance to crown gall tumorigenesis. Proc Natl Acad Sci U S A 98:13437–13442. PubMed PMC

Peláez P, Sanchez F (2013) Small RNAs in plant defense responses during viral and bacterial interactions: similarities and differences. Front Plant Sci 4:343. PubMed PMC

Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246. PubMed PMC

Dunoyer P, Himber C, Voinnet O (2006) Induction, suppression and requirement of RNA silencing pathways in virulent Agrobacterium tumefaciens infections. Nat Genet 38:258–263. PubMed

Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20:759–771. PubMed

Zobrazit více v PubMed

GENBANK
KF906524, KF906525, KF906526, KF906527, KF906528, KF906529, KF906530, KF906531, KF906532, KF906533, KF906534, KF918722, KF918723, KF918724, KF918725, KF918726, KF918727, KF918728, KF918729, KF918730, KF918731, KF918732, KF918733, KF918734, KF918735, KF918736, KF918737, KF918738, KF918739, KF918740, KF918741, KF918742, KF918743, KF918744, KF918745, KJ410408, KJ410409, KJ410410, KJ410411, KJ410412, KJ410413, KJ410414, KJ410415, KJ410416, KJ410417, KJ410418, KJ410419, KJ410420, KJ410421, KJ410422, KJ410423, KJ410424, KJ410425, KJ410426, KJ410427, KJ410428, KJ410429, KJ410430, KJ410431, KJ410432, KJ410433, KJ410434, KJ410435, KJ410436, KJ410437, KJ410438, KJ410439, KJ410440, KJ410441, KJ410442, KJ410443, KJ410444, KJ410445, KJ410446, KJ410447, KJ410448, KJ410449, KJ410450, KJ410451, KJ410452, KJ410453, KJ410454, KM678224, KM678225, KM678226, KM678227, KM678228, KM678229, KM678230, KM678231, KM678232, KM678233, KM678234, KM678235, KM678236, KM678237, KM678238, KM678239

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...