The furo [3,2-b]pyridine motif represents a relatively underexplored central pharmacophore in the area of kinase inhibitors. Herein, we report flexible synthesis of 3,5-disubstituted furo [3,2-b]pyridines that relies on chemoselective couplings of newly prepared 5-chloro-3-iodofuro [3,2-b]pyridine. This methodology allowed efficient second-generation synthesis of the state-of-the-art chemical biology probe for CLK1/2/4 MU1210, and identification of the highly selective inhibitors of HIPKs MU135 and MU1787 which are presented and characterized in this study, including the X-ray crystal structure of MU135 in HIPK2. chemical biology probe.
- MeSH
- furany chemická syntéza metabolismus farmakologie MeSH
- inhibitory proteinkinas chemická syntéza metabolismus farmakologie MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- MFC-7 buňky MeSH
- molekulární struktura MeSH
- myši MeSH
- protein-serin-threoninkinasy antagonisté a inhibitory metabolismus MeSH
- pyridiny chemická syntéza metabolismus farmakologie MeSH
- transportní proteiny antagonisté a inhibitory metabolismus MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Synthetic compounds that mimic the action of juvenile hormones (JHs) are founding members of a class of insecticides called insect growth regulators (IGRs). Like JHs, these juvenoids block metamorphosis of insect larvae to reproductive adults. Many biologically active juvenoids deviate in their chemical structure considerably from the sesquiterpenoid JHs, raising questions about the mode of action of such JH mimics. Despite the early deployment of juvenoid IGRs in the mid-1970s, their molecular effect could not be understood until recent discoveries of JH signaling through an intracellular JH receptor, namely the ligand-binding transcription factor Methoprene-tolerant (Met). Here, we briefly overview evidence defining three widely employed and chemically distinct juvenoid IGRs (methoprene, pyriproxyfen, and fenoxycarb), as agonist ligands of the JH receptor. We stress that knowledge of the target molecule is critical for using these compounds both as insecticides and as research tools.
- MeSH
- biologická proměna účinky léků MeSH
- fenylkarbamáty metabolismus farmakologie MeSH
- insekticidy chemie metabolismus farmakologie MeSH
- juvenilní hormony agonisté chemie farmakologie MeSH
- ligandy MeSH
- methopren metabolismus farmakologie MeSH
- pyridiny metabolismus farmakologie MeSH
- rezistence k insekticidům MeSH
- vývojová regulace genové exprese účinky léků MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Chlorhexidine (CHX) and octenidine (OCT), antimicrobial compounds used in oral care products (toothpastes and mouthwashes), were recently revealed to interfere with human sex hormone receptor pathways. Experiments employing model organisms-white-rot fungi Irpex lacteus and Pleurotus ostreatus-were carried out in order to investigate the biodegradability of these endocrine-disrupting compounds and the capability of the fungi and their extracellular enzyme apparatuses to biodegrade CHX and OCT. Up to 70% ± 6% of CHX was eliminated in comparison with a heat-killed control after 21 days of in vivo incubation. An additional in vitro experiment confirmed manganese-dependent peroxidase and laccase are partially responsible for the removal of CHX. Up to 48% ± 7% of OCT was removed in the same in vivo experiment, but the strong sorption of OCT on fungal biomass prevented a clear evaluation of the involvement of the fungi or extracellular enzymes. On the other hand, metabolites indicating the enzymatic transformation of both CHX and OCT were detected and their chemical structures were proposed by means of liquid chromatography-mass spectrometry. Complete biodegradation by the ligninolytic fungi was not achieved for any of the studied analytes, which emphasizes their recalcitrant character with low possibility to be removed from the environment.
- MeSH
- antiinfekční látky lokální metabolismus MeSH
- biodegradace * MeSH
- chlorhexidin chemie metabolismus MeSH
- houby metabolismus MeSH
- lidé MeSH
- metabolomika metody MeSH
- pyridiny chemie metabolismus MeSH
- stomatologická péče MeSH
- transformace genetická MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Nitrilases participate in the nitrile metabolism in microbes and plants. They are widely used to produce carboxylic acids from nitriles. Nitrilases were described in bacteria, Ascomycota and plants. However, they remain unexplored in Basidiomycota. Yet more than 200 putative nitrilases are found in this division via GenBank. The majority of them occur in the subdivision Agaricomycotina. In this work, we analyzed their sequences and classified them into phylogenetic clades. Members of clade 1 (61 proteins) and 2 (25 proteins) are similar to plant nitrilases and nitrilases from Ascomycota, respectively, with sequence identities of around 50%. The searches also identified five putative cyanide hydratases (CynHs). Representatives of clade 1 and 2 (NitTv1 from Trametes versicolor and NitAg from Armillaria gallica, respectively) and a putative CynH (NitSh from Stereum hirsutum) were overproduced in Escherichia coli. The substrates of NitTv1 were fumaronitrile, 3-phenylpropionitrile, β-cyano-l-alanine and 4-cyanopyridine, and those of NitSh were hydrogen cyanide (HCN), 2-cyanopyridine, fumaronitrile and benzonitrile. NitAg only exhibited activities for HCN and fumaronitrile. The substrate specificities of these nitrilases were largely in accordance with substrate docking in their homology models. The phylogenetic distribution of each type of nitrilase was determined for the first time.
- MeSH
- aminohydrolasy chemie genetika metabolismus MeSH
- Basidiomycota klasifikace enzymologie genetika MeSH
- fumaráty metabolismus MeSH
- fungální proteiny chemie genetika metabolismus MeSH
- fylogeneze MeSH
- kyanovodík metabolismus MeSH
- pyridiny metabolismus MeSH
- simulace molekulového dockingu MeSH
- substrátová specifita MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
The androgen receptor (AR) is a steroid hormone receptor and its high expression and disruption of its regulation are strongly implicated in prostate cancer (PCa) development. One of the current therapies includes application of steroidal antiandrogens leading to blockade of the AR action by the abrogation of AR-mediated signaling. We introduced here novel 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused steroidal compounds, described their synthesis based on [8π+2π] cycloaddition reactions of diazafulvenium methides with different steroidal scaffolds and showed their biological evaluation in different prostate cancer cell lines in vitro. Our results showed the ability of novel compounds to suppress the expression of known androgen receptor targets, Nkx3.1 and PSA in two prostate cell lines, 22Rv1 and VCaP. Candidate compound diminished the transcription of AR-regulated genes in the reporter cell line in a concentration-dependent manner. Antiproliferative activity of the most promising steroid was studied by clonogenic assay and induction of apoptosis in treated cells was documented by immunoblot detection of cleaved PARP.
- MeSH
- androgenní receptory metabolismus MeSH
- antitumorózní látky chemická syntéza metabolismus farmakologie MeSH
- homeodoménové proteiny metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prostaty farmakoterapie MeSH
- pyrazoly chemická syntéza metabolismus farmakologie MeSH
- pyridiny chemická syntéza metabolismus farmakologie MeSH
- simulace molekulového dockingu MeSH
- steroidy chemická syntéza metabolismus farmakologie MeSH
- transkripční faktory metabolismus MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Solid-phase microextraction (SPME) is an alternative method to dialysis and ultrafiltration for the determination of plasma protein binding (PPB) of drugs. It is particularly advantageous for complicated analytes where standard methods are not applicable. Di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) is a lead compound of novel thiosemicarbazone anti-cancer drugs, which entered clinical trials in 2016. However, this agent exhibited non-specific binding on filtration membranes and had intrinsic chelation activity, which precluded standard PPB methods. In this study, using a simple and fast procedure, we prepared novel SPME fibers for extraction of DpC based on a metal-free, silicon string support, covered with C18 sorbent. Reproducibility of the preparation process was demonstrated by the percent relative standard deviation (RSD) of ≤ 9.2% of the amount of DpC extracted from PBS by several independently prepared fibers. The SPME procedure was optimized by evaluating extraction and desorption time profiles. Suitability of the optimized protocol was verified by examining reproducibility, linearity, and recovery of DpC extracted from PBS or plasma. All samples extracted by SPME were analyzed using an optimized and validated UHPLC-MS/MS method. The developed procedure was applied to the in vitro determination of PPB of DpC at two clinically relevant concentrations (500 and 1000 ng/mL). These studies showed that DpC is highly bound to plasma proteins (PPB ≥ 88%) and this did not differ significantly between both concentrations tested. This investigation provides novel data in the applicability of SPME for the determination of PPB of chelators, as well as useful information for the clinical development of DpC. Graphical abstract.
- MeSH
- adsorpce MeSH
- antitumorózní látky metabolismus MeSH
- design vybavení MeSH
- křemík chemie MeSH
- krevní proteiny metabolismus MeSH
- krysa rodu rattus MeSH
- mikroextrakce na pevné fázi přístrojové vybavení metody MeSH
- pyridiny metabolismus MeSH
- skot MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- thiosemikarbazony metabolismus MeSH
- vazba proteinů MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Few cases of spontaneously horizontally transferred bacterial genes into plant genomes have been described to date. The occurrence of horizontally transferred genes from the T-DNA of Agrobacterium rhizogenes into the plant genome has been reported in the genus Nicotiana and in the species Linaria vulgaris. Here we compare patterns of evolution in one of these genes (a gene encoding mikimopine synthase, mis) following three different events of horizontal gene transfer (HGT). As this gene plays an important role in Agrobacterium, and there are known cases showing that genes from pathogens can acquire plant protection function, we hypothesised that in at least some of the studied species we will find signs of selective pressures influencing mis sequence. The mikimopine synthase (mis) gene evolved in a different manner in the branch leading to Nicotiana tabacum and N. tomentosiformis, in the branch leading to N. glauca and in the genus Linaria. Our analyses of the genus Linaria suggest that the mis gene began to degenerate soon after the HGT. In contrast, in the case of N. glauca, the mis gene evolved under significant selective pressures. This suggests a possible role of mikimopine synthase in current N. glauca and its ancestor(s). In N. tabacum and N. tomentosiformis, the mis gene has a common frameshift mutation that disrupted its open reading frame. Interestingly, our results suggest that in spite of the frameshift, the mis gene could evolve under selective pressures. This sequence may still have some regulatory role at the RNA level as suggested by coverage of this sequence by small RNAs in N. tabacum.
- MeSH
- Agrobacterium enzymologie genetika MeSH
- bakteriální proteiny klasifikace genetika metabolismus MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- imidazoly metabolismus MeSH
- interakce hostitele a patogenu genetika MeSH
- Linaria genetika mikrobiologie MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- oxidoreduktasy působící na CH-NH vazby klasifikace genetika metabolismus MeSH
- posunová mutace MeSH
- přenos genů horizontální * MeSH
- pyridiny metabolismus MeSH
- regulace genové exprese enzymů MeSH
- sekvence nukleotidů MeSH
- selekce (genetika) MeSH
- tabák klasifikace genetika mikrobiologie MeSH
- transformace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Carbonyl reductase 1 (CBR1 or SDR21C1) is a ubiquitously-expressed, cytosolic, monomeric, and NADPH-dependent enzyme. CBR1 participates in apoptosis, carcinogenesis and drug resistance, and has a protective role in oxidative stress, cancer and neurodegeneration. S-Nitrosoglutathione (GSNO) represents the newest addition to its diverse substrate spectrum, which includes a wide range of xenobiotics and endogenous substances. GSNO has also been shown to covalently modify and inhibit CBR1. The aim of the present study was to quantify and characterize the resulting modifications. Of five candidate cysteines for modification by 2 mM GSNO (positions 26, 122, 150, 226, 227), the last four were analyzed using MALDI-TOF/TOF mass spectrometry and then quantified using the Selected Reaction Monitoring Approach on hyphenated HPLC with a triple quadrupole mass spectrometer. The analysis confirmed GSNO concentration-dependent S-glutathionylation of cysteines at positions 122, 150, 226, 227 which was 2-700 times higher compared to wild-type CBR1 (WT-CBR1). Moreover, a disulfide bond between neighboring Cys-226 and Cys-227 was detected. We suggest a role of these two cysteines as a redox-sensitive cysteine pair. The catalytic properties of wild-type and enzyme modified with 2 mM GSNO were also investigated by steady state kinetic experiments with various substrates. GSNO treatment of CBR1 resulted in a 2-5-fold decrease in kcat with menadione, 4-benzoylpyridine, 2,3-hexanedione, daunorubicin and 1,4-naphthoquinone. In contrast, the same treatment increased kcat for substrates containing a 1,2-diketo group in a ring structure (1,2-naphthoquinone, 9,10-phenanthrenequinone, isatin). Except for 9,10-phenanthrenequinone, all changes in kcat were at least in part compensated for by a similar change in Km, overall yielding no drastic changes in catalytic efficiency. The findings indicate that GSNO-induced covalent modification of cysteine residues affects the kinetic mechanism of CBR1 both in terms of substrate binding and turnover rate, probably by covalent modification of Cys-226 and/or Cys-227.
- MeSH
- alkoholoxidoreduktasy metabolismus MeSH
- cystein metabolismus MeSH
- daunomycin metabolismus farmakologie MeSH
- hexanony metabolismus farmakologie MeSH
- kinetika MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- naftochinony metabolismus farmakologie MeSH
- oxidace-redukce účinky léků MeSH
- pyridiny metabolismus farmakologie MeSH
- S-nitrosoglutathion metabolismus farmakologie MeSH
- sekvence aminokyselin MeSH
- vitamin K 3 metabolismus farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The production of secondary metabolites in Trifolium pratense L. suspension culture of the family of legume plants (Fabaceae) is low, and therefore there was an attempt to increase it by elicitation. New synthetic substance, 2-(2-fluoro-6-nitrobenzylsulfanyl)pyridine-4-carbothioamide, was tested as elicitor--a substance that showed the best elicitation effect after 48-hour application of 1 μmol L⁻¹ concentration. Maximum contents of genistin (11.60 mg g⁻¹ DW), daidzein (8.31 mg g⁻¹ DW), and genistein (1.50 mg g⁻¹ DW) were recorded, and the production of these isoflavonoids thus significantly increased, when compared with the control, by 152%, 151%, and 400%. The maximum content of flavonoids (5.78 mg g⁻¹ DW) and the increase in the production by 142%, when compared with the control, were induced by 6-hour application of 100 μmol L⁻¹ concentration. The tested substance showed to be an effective elicitor of phenylpropane metabolism.
Two novel, structurally unusual cysteine derivatives were isolated from the bulbs of Allium stipitatum (Allium subg. Melanocrommyum) and shown to be S-(2-pyridyl)cysteine N-oxide and S-(2-pyridyl)glutathione N-oxide. The former compound is the first example of a naturally occurring alliinase substrate that contains an N-oxide functionality instead of the S-oxide group. In addition, S-methylcysteine S-oxide (methiin) and S-(methylthiomethyl)cysteine 4-oxide (marasmin) were found in the bulbs. Presented data suggest that the previously reported identification of S-(2-pyridyl)cysteine S-oxide was most likely erroneous. The alliinase-mediated formation of pyridyl-containing compounds following disruption of A. stipitatum bulbs was studied by a combination of HPLC-MS, HPLC-PDA, DART-MS, and NMR techniques. It was found that no pyridyl-containing thiosulfinates are present in homogenized bulbs in detectable quantities. Instead, various pyridine N-oxide derivatives are formed, including N-hydroxypyridine-2(1H)-thione (pyrithione), 2-(methyldithio)pyridine N-oxide, 2-[(methylthio)methyldithio]pyridine N-oxide, di(2-pyridyl) disulfide N-oxide, and di(2-pyridyl) disulfide N,N'-dioxide. This represents the first report of pyrithione formation as a natural product.
- MeSH
- Allium chemie MeSH
- hmotnostní spektrometrie MeSH
- kořeny rostlin chemie metabolismus MeSH
- lyasy štěpící vazby C-S metabolismus MeSH
- magnetická rezonanční spektroskopie MeSH
- pyridiny chemie izolace a purifikace metabolismus MeSH
- sloučeniny síry chemie izolace a purifikace metabolismus MeSH
- thioketony chemie izolace a purifikace metabolismus MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH