Remediation
Dotaz
Zobrazit nápovědu
Central European journal of public health, ISSN 1210-7778 vol. 2 (JHEMI vol. 38), suppl., 1994
88 s. : tab., grafy ; 30 cm
- MeSH
- biologická dostupnost MeSH
- nakládání s odpady MeSH
- nebezpečný odpad škodlivé účinky MeSH
- Publikační typ
- kongresy MeSH
- sborníky MeSH
- Geografické názvy
- Evropa MeSH
- Konspekt
- Veřejné zdraví a hygiena
- NLK Obory
- veřejné zdravotnictví
- environmentální vědy
This paper presents experimental results from the use of biosurfactants in the remediation of a soil from a smelter in Poland. In the soil, concentrations of Cu (1659.1 mg/kg) and Pb (290.8 mg/kg) exceeded the limit values. Triple batch washing was tested as a soil treatment. Three main variants were used, each starting with a different plant-derived (saponin, S; tannic acid, T) or microbial (rhamnolipids, R) biosurfactant solution in the first washing, followed by 9 different sequences using combinations of the tested biosurfactants (27 in total). The efficiency of the washing was determined based on the concentration of metal removed after each washing (CR), the cumulative removal efficiency (Ecumulative) and metal stability (calculated as the reduced partition index, Ir, based on the metal fractions from BCR sequential extraction). The type of biosurfactant sequence influenced the CR values. The variants that began with S and R had the highest average Ecumulative for Cu and Pb, respectively. The Ecumulative value correlated very strongly (r > 0.8) with the stability of the residual metals in the soil. The average Ecumulative and stability of Cu were the highest, 87.4% and 0.40, respectively, with the S-S-S, S-S-T, S-S-R and S-R-T sequences. Lead removal and stability were the highest, 64-73% and 0.36-0.41, respectively, with the R-R-R, R-R-S, R-S-R and R-S-S sequences. Although the loss of biosurfactants was below 10% after each washing, sequential washing with biosurfactants enriched the soil with external organic carbon by an average of 27-fold (S-first variant), 24-fold (R first) or 19-fold (T first). With regard to environmental limit values, metal stability and organic carbon resources, sequential washing with different biosurfactants is a beneficial strategy for the remediation of smelter-contaminated soil with given properties.
- MeSH
- látky znečišťující půdu * analýza MeSH
- půda MeSH
- regenerace a remediace životního prostředí * MeSH
- těžké kovy * analýza MeSH
- znečištění životního prostředí MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Polsko MeSH
Hexachlorocyclohexane (HCH) isomers represent a family of formerly widely utilized pesticides that are persistent, capable of undergoing long-range transport and tend to bioaccumulate in human and animal tissue. Their widespread global utilization coupled with a propensity to adversely impact human health and the environment translates into an urgent need to develop feasible methodologies by which to treat HCH-impacted groundwater and soil. The present study was conducted to evaluate the efficacy of two persulfate-based oxidants: peroxydisulfate (S2O8 (2-), PDS) and peroxymonosulfate (HSO5 (-), PMS) activated by electrochemical processes (EC) to treat HCH-impacted environmental media. This research demonstrated that the optimal experimental conditions (oxidant dose and electrical current) were 2 mM PDS and 20 mA for an aqueous solution of 4 μM of summed HCHs (ΣHCH). GC/MS full scan analysis revealed the presence of 2,4,6-trichlorophenol as the only detectable intermediate formed during electro-activated PDS treatment of ΣHCH. The investigated method was tested on leachate from a known HCHs-impacted site in Hajek, Czech Republic which contained 106 μg/l of ΣHCH and 129 μg/l of chlorobenzenes. Results from batch treatment showed positive results for electro-activated PDS but only negligible effectiveness for electro-activated PMS. In addition to explaining the efficacy of the electro-activated PDS, this research also explored the basis for the differing reactivities of these two persulfates.
- MeSH
- chlorfenoly chemie MeSH
- elektrochemie MeSH
- hexachlorcyklohexan chemie MeSH
- insekticidy chemie MeSH
- látky znečišťující půdu chemie MeSH
- oxidancia chemie MeSH
- peroxidy chemie MeSH
- podzemní voda MeSH
- regenerace a remediace životního prostředí * MeSH
- sírany chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
In this paper, the authors present the pilot in situ application of nano zero-valent iron (nZVI) for effective remediation of groundwater in an industrial area contaminated by chlorinated ethylenes (CEs), which create a significant group of global environmental contaminants. This work covers the entire 1-year remediation process, including systematic laboratory tests and field application techniques for nZVI. The application was carried out in the area of a metal fabrication industrial facility in the Czech Republic. Contamination of CEs in this area is a consequence of old ecological loads. The entire remediation process contained the following steps: monitoring of the area, selection of the most relevant hot spot, selection of the most appropriate application borehole, systematic laboratory tests, application of nZVI, and postapplication monitoring. Ten kilograms of nZVI were applied as a water suspension into the selected borehole. Significant decreases in concentrations of selected contaminants were observed in the first month after application. The reaction in the borehole was completed within approximately 5 to 6 months after the application and during this period almost 50% elimination of contamination was achieved.
- MeSH
- chemické látky znečišťující vodu chemie MeSH
- ethyleny chemie izolace a purifikace MeSH
- halogenace * MeSH
- koncentrace vodíkových iontů MeSH
- kovové nanočástice chemie MeSH
- pilotní projekty MeSH
- podzemní voda chemie MeSH
- regenerace a remediace životního prostředí metody MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Standard approaches to cognitive remediation can suffer from limited skill transferability to patients' life. Complex virtual environments (VEs) enable us to create ecologically valid remediation scenarios while preserving laboratory conditions. Nevertheless, the feasibility and efficacy of these programs in psychiatric patients are still unknown. Our aim was to compare the feasibility and efficacy of a novel rehabilitation program, designed in complex VEs, with standard paper-pencil treatment in patients with schizophrenia and major depressive disorder. We recruited 35 participants to complete a VE rehabilitation program and standard treatment in a crossover pilot study. Twenty-eight participants completed at least one program, 22 were diagnosed with schizophrenia and 6 with major depressive disorder. Participant's performance in the representative VE training task significantly improved in terms of maximum achieved difficulty (p ≤ 0.001), speed (p < 0.001) and efficacy (p ≤ 0.001) but not in item performance measure. Neither the standard treatment nor the VE program led to improvement in standardized cognitive measures. Participants perceived both programs as enjoyable and beneficial. The refusal rate was higher in the VE program (8.6%) than in the standard treatment (0%). But in general, the VE program was well-accepted by the psychiatric patients and it required minimal involvement of the clinician due to automatic difficulty level adjustment and performance recording. However, the VE program did not prove to be effective in improving cognitive performance in the standardized measures.
... : 3 ontents -- 1 Visual Field Remediation, 1 -- Jay M. ...
Mosby's optometric problem-solving series
XII, 296 s. : il. ; 24 cm
- MeSH
- optometrie MeSH
- poruchy zraku MeSH
- Konspekt
- Ortopedie. Chirurgie. Oftalmologie
- NLK Obory
- oftalmologie
This mini-review summarizes the current information that has been published on the various effects of nano-scale zerovalent iron (nZVI) on microbial biota, with an emphasis on reports that highlight the positive aspects of its application or its stimulatory effects on microbiota. By nature, nZVI is a highly reactive substance; thus, the possibility of nZVI being toxic is commonly suspected. Accordingly, the cytotoxicity of nZVI and the toxicity of nZVI-related products have been detected by laboratory tests and documented in the literature. However, there are numerous other published studies on its useful nature, which are usually skipped in reviews that deal only with the phenomenon of toxicity. Therefore, the objective of this article is to review both recent publications reporting the toxic effects of nZVI on microbiota and studies documenting the positive effects of nZVI on various environmental remediation processes. Although cytotoxicity is an issue of general importance and relevance, nZVI can reduce the overall toxicity of a contaminated site, which ultimately results in the creation of better living conditions for the autochthonous microflora. Moreover, nZVI changes the properties of the site in a manner such that it can also be used as a tool in a tailor-made approach to support a specific microbial community for the decontamination of a particular polluted site.
Over the past two decades, the use of nanoscale zero-valent iron (nZVI) has emerged as a standard method of contaminated groundwater remediation. The effectiveness of this method depends on key intrinsic hydrogeological parameters, which can affect both reactivity of the nanoparticles and their migration in the aquifer. In the case of low hydraulic permeability, the migration of nanoparticles is limited, which negatively influences remediation. An application of nZVI reinforced with a DC electric field led to a significant increase in the efficiency of remediation, as demonstrated by long-term monitoring at a former industrial site in Horice (Czech Republic). For the method testing, a 12 × 9 m polygon was defined around well IS4, where the original contamination was predominantly composed of DCE (7300 μg/l), and with a total concentration of chlorinated ethenes of 8880 μg/l. During the first stage of the activities, 49 kg of nZVI was injected and monitored for two years. Subsequently, the electrodes were installed, and for three years, the synergistic action of nZVI within an applied DC field was monitored. Based on 32 monitoring campaigns performed over the six years, the combined method was compared with an application of the only nZVI in technical, environmental and economic terms. Technically, the method requires annual reinstallation of anodes as a result of their oxidative disintegration. Environmentally, the method provides significantly improved chlorinated ethane reduction, remediation of low permeable zones, and extended efficiency. Economically, the method is five times cheaper when compared to the nZVI used alone.
- MeSH
- chemické látky znečišťující vodu analýza chemie MeSH
- ethyleny analýza chemie MeSH
- halogenace MeSH
- kovové nanočástice chemie MeSH
- podzemní voda MeSH
- regenerace a remediace životního prostředí * MeSH
- železo MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The high specific surface area and high reactivity of nanoscale zero-valent iron (nZVI) particles have led to much research on their application to environmental remediation. The reactivity of nZVI is affected by both the water chemistry and the properties of the particular type of nZVI particle used. We have investigated the reactivity of three types of commercially available Nanofer particles (from Nanoiron, s.r.o., Czech Republic) that are currently either used in, or proposed for use in full scale environmental remediation projects. The performance of one of these, the air-stable and thus easy-to-handle Nanofer Star particle, has not previously been reported. Experiments were carried out first in batch shaking reactors in order to derive maximum reactivity rates and provide a rapid estimate of the Nanofer particle's reactivity. The experiments were performed under near-natural environmental conditions with respect to the pH value of water and solute concentrations, and results were compared with those obtained using synthetic water. Thereafter, the polyelectrolyte-coated Nanofer 25S particles (having the highest potential for transport within porous media) were chosen for the experiments in column reactors, in order to elucidate nanoparticle reactivity under a more field-site realistic setting. Iopromide was rapidly dehalogenated by the investigated nZVI particles, following pseudo-first-order reaction kinetics that was independent of the experimental conditions. The specific surface area normalized reaction rate constant (kSA) value in the batch reactors ranged between 0.12 and 0.53Lm(-2)h(-1); it was highest for the uncoated Nanofer 25 particles, followed by the polyacrylic acid-coated Nanofer 25S and air-stable Nanofer Star particles. In the batch reactors all particles were less reactive in natural water than in synthetic water. The kSA values derived from the column reactor experiments were about 1000 times lower than those from the batch reactors, ranging between 2.6×10(-4) and 5.7×10(-4)Lm(-2)h(-1). Our results revealed that the easy-to-handle and air-stable Nanofer Star particles are the least reactive of all the Nanofer products tested. The reaction kinetics predicted by column experiments were more realistic than those predicted by batch experiments and these should therefore be used when designing a full-scale field application of nanomaterials for environmental remediation.
- MeSH
- akrylové pryskyřice chemie MeSH
- johexol analogy a deriváty chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- nanočástice chemie MeSH
- poréznost MeSH
- regenerace a remediace životního prostředí MeSH
- voda chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
In recent years, particles of iron in higher oxidation states (Fe(IV-VI)), commonly called ferrates, have been presented theoretically as very effective oxidants. They can potentially be used for elimination of a wide range of organic and inorganic contaminants. However, so far the majority of applications have been carried out only as laboratory tests using model samples in many cases. The application of ferrates in remediation programs has so far proved to be more complicated with results failing to meet expectations. Therefore there is a necessity to consider the suitability of their use or consider their possible combination with other agents in order to reach required removal efficiencies in remediation. This study is focused on laboratory experiments using industrial groundwater leading to the proposal of a pilot field application realized as an ex-situ remediation. The combination of ferrates with hydrogen peroxide was used in this study in order to enhance the removal efficiency during pilot remediation of groundwater strongly contaminated by a wide range of organic contaminants. This combination has been shown to be very effective. During the 24-hour reaction time the majority of detected contaminants were removed by approximately 60-80%. Moreover, the unpleasant odor of the water was suppressed and suspended particles were removed by the flocculation effect of ferric sludge.
- MeSH
- chemické látky znečišťující vodu chemie MeSH
- čištění vody metody MeSH
- laboratoře MeSH
- peroxid vodíku chemie MeSH
- pilotní projekty MeSH
- podzemní voda chemie MeSH
- regenerace a remediace životního prostředí metody MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH