In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910095
Ministry of Agriculture of the Czech Republic
UNCE/SCI/006
Center for Geosphere Dynamics
No. 67188
European Union´s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement
PubMed
33477826
PubMed Central
PMC7832855
DOI
10.3390/nano11010250
PII: nano11010250
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2 nanoparticles, alkaline comet assay, apoptosis, coelomocyte, earthworm, gene expression, innate immunity, lipid peroxidation, phagocytosis, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.
Zobrazit více v PubMed
Gupta S.M., Tripathi M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 2011;56:1639. doi: 10.1007/s11434-011-4476-1. DOI
Gautam A., Ray A., Mukherjee S., Das S., Pal K., Das S., Karmakar P., Ray M., Ray S. Immunotoxicity of copper nanoparticle and copper sulfate in a common Indian earthworm. Ecotoxicol. Environ. Saf. 2018;148:620–631. doi: 10.1016/j.ecoenv.2017.11.008. PubMed DOI
Kwak J.I., An Y.-J. Ecotoxicological Effects of Nanomaterials on Earthworms: A Review. Hum. Ecol. Risk Assess. 2015;21:1566–1575. doi: 10.1080/10807039.2014.960302. DOI
OECD . No. 207, Earthworm, Acute Toxicity Tests. Organisation for Economic Cooperation and Development; Paris, France: 1984. Guideline for the Testing of Chemicals.
OECD . No. 222, Earthworm Reproduction Test (Eisenia Fetida/Eisenia Andrei) Organisation for Economic Cooperation and Development; Paris, France: 2004. Guideline for the Testing of Chemicals.
OECD . No. 317, Bioaccumulation in Terrestrial Oligochaetes. Organisation for Economic Cooperation and Development; Paris, France: 2010. Guidelines for the testing of chemicals.
Valerio-Rodríguez M.F., Trejo-Téllez L.I., Aguilar-González M.A., Medina-Pérez G., Zúñiga-Enríquez J.C., Ortegón-Pérez A., Fernández-Luqueño F. Effects of ZnO, TiO2 or Fe2O3 Nanoparticles on the Body Mass, Reproduction, and Survival of Eisenia fetida. Pol. J. Environ. Stud. 2020;29:2383–2394. doi: 10.15244/pjoes/100668. DOI
Šíma P. Immunology of Annelids. CRC Press; Boca Raton, FL, USA: 1994. Annelid coelomocytes and haemocytes: Roles in cellular immune reactions; pp. 115–165.
Hayashi Y., Engelmann P., Foldbjerg R., Szabo M., Somogyi I., Pollak E., Molnar L., Autrup H., Sutherland D.S., Scott-Fordsmand J., et al. Earthworms and humans in vitro: Characterizing evolutionarily conserved stress and immune responses to silver nanoparticles. Environ. Sci. Technol. 2012;46:4166–4173. doi: 10.1021/es3000905. PubMed DOI
Kwak J.I., Park J.-W., An Y.-J. Effects of silver nanowire length and exposure route on cytotoxicity to earthworms. Environ. Sci. Pollut. Res. 2017;24:14516–14524. doi: 10.1007/s11356-017-9054-x. PubMed DOI
Gupta S., Kushwah T., Yadav S. Earthworm coelomocytes as nanoscavenger of ZnO NPs. Nanoscale Res. Lett. 2014;9:259. doi: 10.1186/1556-276X-9-259. PubMed DOI PMC
Chen Q., Wang N., Zhu M., Lu J., Zhong H., Xue X., Guo S., Li M., Wei X., Tao Y., et al. TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: A proteomic and metabolomic insight. Redox Biol. 2018;15:266–276. doi: 10.1016/j.redox.2017.12.011. PubMed DOI PMC
Alijagic A., Gaglio D., Napodano E., Russo R., Costa C., Benada O., Kofronova O., Pinsino A. Titanium dioxide nanoparticles temporarily influence the sea urchin immunological state suppressing inflammatory-relate gene transcription and boosting antioxidant metabolic activity. J. Hazard. Mater. 2020;384:121389. doi: 10.1016/j.jhazmat.2019.121389. PubMed DOI
Bigorgne E., Foucaud L., Caillet C., Giamberini L., Nahmani J., Thomas F., Rodius F. Cellular and molecular responses of E. fetida coelomocytes exposed to TiO2 nanoparticles. J. Nanopart. Res. 2012;14 doi: 10.1007/s11051-012-0959-5. DOI
Bigorgne E., Foucaud L., Lapied E., Labille J., Botta C., Sirguey C., Falla J., Rose J., Joner E.J., Rodius F., et al. Ecotoxicological assessment of TiO2 byproducts on the earthworm Eisenia fetida. Environ. Pollut. 2011;159:2698–2705. doi: 10.1016/j.envpol.2011.05.024. PubMed DOI
Lapied E., Nahmani J.Y., Moudilou E., Chaurand P., Labille J., Rose J., Exbrayat J.M., Oughton D.H., Joner E.J. Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil. Environ. Int. 2011;37:1105–1110. doi: 10.1016/j.envint.2011.01.009. PubMed DOI
Stein E., Cooper E.L. The Role of Opsonins in Phagocytosis by Coelomocytes of the Earthworm, Lumbricus Terrestris. Dev. Comp. Immunol. 1981;5:415–425. doi: 10.1016/S0145-305X(81)80054-7. PubMed DOI
Hayashi Y., Miclaus T., Scavenius C., Kwiatkowska K., Sobota A., Engelmann P., Scott-Fordsmand J.J., Enghild J.J., Sutherland D.S. Species Differences Take Shape at Nanoparticles: Protein Corona Made of the Native Repertoire Assists Cellular Interaction. Environ. Sci. Technol. 2013;47:14367–14375. doi: 10.1021/es404132w. PubMed DOI
Brunelli A., Pojana G., Callegaro S., Marcomini A. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J. Nanoparticle Res. 2013;15 doi: 10.1007/s11051-013-1684-4. DOI
Alijagic A., Benada O., Kofronova O., Cigna D., Pinsino A. Sea Urchin Extracellular Proteins Design a Complex Protein Corona on Titanium Dioxide Nanoparticle Surface Influencing Immune Cell Behavior. Front. Immunol. 2019;10 doi: 10.3389/fimmu.2019.02261. PubMed DOI PMC
Müllerová I. Imaging of specimens at optimized low and very low energies in scanning electron microscopes. Scanning. 2001;23:379–394. doi: 10.1002/sca.4950230605. PubMed DOI
Benada O., Pokorný V. Modification of the Polaron sputter-coater unit for glow-discharge activation of carbon support films. J. Electron Microsc. Tech. 1990;16:235–239. doi: 10.1002/jemt.1060160304. PubMed DOI
Semerad J., Cvancarova M., Filip J., Kaslik J., Zlota J., Soukupova J., Cajthaml T. Novel assay for the toxicity evaluation of nanoscale zero-valent iron and derived nanomaterials based on lipid peroxidation in bacterial species. Chemosphere. 2018;213:568–577. doi: 10.1016/j.chemosphere.2018.09.029. PubMed DOI
Roubalova R., Prochazkova P., Hanc A., Dvorak J., Bilej M. Mutual interactions of E. andrei earthworm and pathogens during the process of vermicomposting. Environ. Sci. Pollut. Res. Int. 2019:10.1007/s11356-019-04329-5. doi: 10.1007/s11356-019-04329-5. PubMed DOI
Magdolenova Z., Bilaničová D., Pojana G., Fjellsbø L.M., Hudecova A., Hasplova K., Marcomini A., Dusinska M. Impact of agglomeration and different dispersions of titanium dioxide nanoparticles on the human related in vitro cytotoxicity and genotoxicity. J. Environ. Monit. 2012;14:455–464. doi: 10.1039/c2em10746e. PubMed DOI
Ji Z., Jin X., George S., Xia T., Meng H., Wang X., Suarez E., Zhang H., Hoek E.M.V., Godwin H.A., et al. Dispersion and Stability Optimization of TiO2 Nanoparticles in Cell Culture Media. Environ. Sci. Technol. 2010;44:7309–7314. doi: 10.1021/es100417s. PubMed DOI PMC
Huerta-García E., Pérez-Arizti J.A., Márquez-Ramírez S.G., Delgado-Buenrostro N.L., Chirino Y.I., Iglesias G.G., López-Marure R. Titanium dioxide nanoparticles induce strong oxidative stress and mitochondrial damage in glial cells. Free Radic. Biol. Med. 2014;73:84–94. doi: 10.1016/j.freeradbiomed.2014.04.026. PubMed DOI
Semerad J., Moeder M., Filip J., Pivokonsky M., Filipova A., Cajthaml T. Oxidative stress in microbes after exposure to iron nanoparticles: Analysis of aldehydes as oxidative damage products of lipids and proteins. Environ. Sci. Pollut. Res. 2019;26:33670–33682. doi: 10.1007/s11356-019-06370-w. PubMed DOI
Garcia-Velasco N., Gandariasbeitia M., Irizar A., Soto M. Uptake route and resulting toxicity of silver nanoparticles in Eisenia fetida earthworm exposed through Standard OECD Tests. Ecotoxicology. 2016;25:1543–1555. doi: 10.1007/s10646-016-1710-2. PubMed DOI
Semerad J., Pacheco N.I.N., Grasserova A., Prochazkova P., Pivokonsky M., Pivokonska L., Cajthaml T. In Vitro Study of the Toxicity Mechanisms of Nanoscale Zero-Valent Iron (nZVI) and Released Iron Ions Using Earthworm Cells. Nanomaterials. 2020;10:2189. doi: 10.3390/nano10112189. PubMed DOI PMC
Homa J., Stalmach M., Wilczek G., Kolaczkowska E. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J. Comp. Physiol. B. 2016;186:417–430. doi: 10.1007/s00360-016-0973-5. PubMed DOI PMC
Tumminello R.A., Fuller-Espie S.L. Heat stress induces ROS production and histone phosphorylation in celomocytes of Eisenia hortensis. Invertebr. Surviv. J. 2013;10:50–57.
Ayala A., Muñoz M.F., Argüelles S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014;2014:360438. doi: 10.1155/2014/360438. PubMed DOI PMC
Zhang C., Zhu L., Wang J., Wang J., Du Z., Li B., Zhou T., Cheng C., Wang Z. Evaluating subchronic toxicity of fluoxastrobin using earthworms (Eisenia fetida) Sci. Total Environ. 2018;642:567–573. doi: 10.1016/j.scitotenv.2018.06.091. PubMed DOI
Poon W.-L., Lee J.C.-Y., Leung K.S., Alenius H., El-Nezami H., Karisola P. Nanosized silver, but not titanium dioxide or zinc oxide, enhances oxidative stress and inflammatory response by inducing 5-HETE activation in THP-1 cells. Nanotoxicology. 2020;14:453–467. doi: 10.1080/17435390.2019.1687776. PubMed DOI
Reeves J.F., Davies S.J., Dodd N.J.F., Jha A.N. Hydroxyl radicals (OH) are associated with titanium dioxide (TiO2) nanoparticle-induced cytotoxicity and oxidative DNA damage in fish cells. Mutat. Res.-Fund. Mol. Mech. Mut. 2008;640:113–122. doi: 10.1016/j.mrfmmm.2007.12.010. PubMed DOI
Hu C.W., Li M., Cui Y.B., Li D.S., Chen J., Yang L.Y. Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol. Biochem. 2010;42:586–591. doi: 10.1016/j.soilbio.2009.12.007. DOI
Zhu Y., Wu X., Liu Y., Zhang J., Lin D. Integration of transcriptomics and metabolomics reveals the responses of earthworms to the long-term exposure of TiO2 nanoparticles in soil. Sci. Total Environ. 2020;719:137492. doi: 10.1016/j.scitotenv.2020.137492. PubMed DOI
Candas D., Li J.J. MnSOD in oxidative stress response-potential regulation via mitochondrial protein influx. Antiox. Redox. Sign. 2014;20:1599–1617. doi: 10.1089/ars.2013.5305. PubMed DOI PMC
Natarajan V., Wilson C.L., Hayward S.L., Kidambi S. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes. PLoS ONE. 2015;10:e0134541. doi: 10.1371/journal.pone.0134541. PubMed DOI PMC
Bernard F., Brulle F., Douay F., Lemiere S., Demuynck S., Vandenbulcke F. Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an “exposure/depuration” experimental scheme with field soils. Ecotoxicol. Environ. Saf. 2010;73:1034–1045. doi: 10.1016/j.ecoenv.2010.01.010. PubMed DOI
Homa J., Zorska A., Wesolowski D., Chadzinska M. Dermal exposure to immunostimulants induces changes in activity and proliferation of coelomocytes of Eisenia andrei. J. Comp. Physiol. B. 2013;183:313–322. doi: 10.1007/s00360-012-0710-7. PubMed DOI PMC
Bodó K., Ernszt D., Németh P., Engelmann P. Distinct immune-and defense-related molecular fingerprints in sepatated coelomocyte subsets of Eisenia andrei earthworms. Invertebr. Surviv. J. 2018;15:338–345.