Sea Urchin Extracellular Proteins Design a Complex Protein Corona on Titanium Dioxide Nanoparticle Surface Influencing Immune Cell Behavior
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31616433
PubMed Central
PMC6763604
DOI
10.3389/fimmu.2019.02261
Knihovny.cz E-zdroje
- Klíčová slova
- biocorona, echinoderm, extracellular signaling, immune-adhesome, in vitro-ex vivo model, proxy to human,
- MeSH
- buněčná adheze imunologie MeSH
- fagocyty imunologie MeSH
- galektiny imunologie MeSH
- glykoproteiny imunologie MeSH
- ježovky imunologie MeSH
- nanočástice aplikace a dávkování MeSH
- nektiny imunologie MeSH
- Paracentrotus imunologie MeSH
- proteinová korona imunologie MeSH
- proteom imunologie MeSH
- titan imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- galektiny MeSH
- glykoproteiny MeSH
- nektiny MeSH
- proteinová korona MeSH
- proteom MeSH
- titan MeSH
- titanium dioxide MeSH Prohlížeč
- toposome glycoprotein complex MeSH Prohlížeč
Extensive exploitation of titanium dioxide nanoparticles (TiO2NPs) augments rapid release into the marine environment. When in contact with the body fluids of marine invertebrates, TiO2NPs undergo a transformation and adhere various organic molecules that shape a complex protein corona prior to contacting cells and tissues. To elucidate the potential extracellular signals that may be involved in the particle recognition by immune cells of the sea urchin Paracentrotus lividus, we investigated the behavior of TiO2NPs in contact with extracellular proteins in vitro. Our findings indicate that TiO2NPs are able to interact with sea urchin proteins in both cell-free and cell-conditioned media. The two-dimensional proteome analysis of the protein corona bound to TiO2NP revealed that negatively charged proteins bound preferentially to the particles. The main constituents shaping the sea urchin cell-conditioned TiO2NP protein corona were proteins involved in cellular adhesion (Pl-toposome, Pl-galectin-8, Pl-nectin) and cytoskeletal organization (actin and tubulin). Immune cells (phagocytes) aggregated TiO2NPs on the outer cell surface and within well-organized vesicles without eliciting harmful effects on the biological activities of the cells. Cells showed an active metabolism, no oxidative stress or caspase activation. These results provide a new level of understanding of the extracellular proteins involved in the immune-TiO2NP recognition and interaction in vitro, confirming that primary immune cell cultures from P. lividus can be an optional model for swift and efficient immune-toxicological investigations.
Institute of Microbiology of The Czech Academy of Sciences Prague Czechia
Istituto per la Ricerca e l'Innovazione Biomedica Consiglio Nazionale delle Ricerche Palermo Italy
Zobrazit více v PubMed
Cargnello M, Gordon TR, Murray CB. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals. Chem Rev. (2014) 114:9319–45. 10.1021/cr500170p PubMed DOI
Mahon E, Salvati A, Baldelli Bombelli F, Lynch I, Dawson KA. Designing the nanoparticle–biomolecule interface for “targeting and therapeutic delivery”. J Control Release. (2012) 161:164–74. 10.1016/j.jconrel.2012.04.009 PubMed DOI
Russell WMS, Burch RL. The Principles of Humane Experimental Technique. London: Methuen; (1959).
Pinsino A, Alijagic A. Sea urchin Paracentrotus lividus immune cells in culture: formulation of the appropriate harvesting and culture media and maintenance conditions. Biol Open. (2019) 8:bio039289. 10.1242/bio.039289 PubMed DOI PMC
Bols NC, Pham PH, Dayeh VR, Lee LEJ. Invitromatics, invitrome, and invitroomics: introduction of three new terms for in vitro biology and illustration of their use with the cell lines from rainbow trout. In Vitro Cell Dev Biol Anim. (2017) 53:383–405. 10.1007/s11626-017-0142-5 PubMed DOI
Eberl G. Immunity by equilibrium. Nat Rev Immunol. (2016) 16:524–32. 10.1038/nri.2016.75 PubMed DOI
Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. . The genome of the sea urchin Strongylocentrotus purpuratus. Science. (2006) 314:941–52. 10.1126/science.1133609 PubMed DOI PMC
Smith LC, Arizza V, Hudgell MAB, Barone G, Bodnar AG, Buckley KM, et al. Echinodermata: the complex immune system in echinoderms. In Cooper EL, editor. Advances in Comparative Immunology. Springer International Publishing AG; (2018). p. 409–501. 10.1007/978-3-319-76768-0_13 DOI
Falugi C, Aluigi MG, Chiantore MC, Privitera D, Ramoino P, Gatti MA, et al. . Toxicity of metal oxide nanoparticles in immune cells of the sea urchin. Mar Environ Res. (2012) 76:114–21. 10.1016/j.marenvres.2011.10.003 PubMed DOI
Pinsino A, Russo R, Bonaventura R, Brunelli A, Marcomini A, Matranga V. Titanium dioxide nanoparticles stimulate sea urchin immune cell phagocytic activity involving TLR/p38 MAPK-mediated signalling pathway. Sci Rep. (2015) 5:14492. 10.1038/srep14492 PubMed DOI PMC
Handy RD, Owen R, Valsami-Jones E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology. (2008) 17:315–25. 10.1007/s10646-008-0206-0 PubMed DOI
Brunelli A, Pojana G, Callegaro S, Marcomini A. Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J Nanopart Res. (2013) 15:1684–93. 10.1007/s11051-013-1684-4 DOI
Monopoli MP, Pitek AS, Lynch I, Dawson KA. Formation and characterization of the nanoparticle–protein corona. In: Bergese P, Hamad-Schifferli K. editors. Nanomaterial Interfaces in Biology. Totowa, NJ: Humana Press; (2013). p. 137–55. 10.1007/978-1-62703-462-3_11 PubMed DOI
Dai Q, Guo J, Yan Y, Ang CS, Bertleff-Zieschang N, Caruso F. Cell-conditioned protein coronas on engineered particles influence immune responses. Biomacromolecules. (2017) 18:431–9. 10.1021/acs.biomac.6b01545 PubMed DOI
Monopoli MP, Åberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials. Nat Nanotechnol. (2012) 7:779–86. 10.1038/nnano.2012.207 PubMed DOI
Loosli F, Vitorazi L, Berret JF, Stoll S. Towards a better understanding on agglomeration mechanisms and thermodynamic properties of TiO2 nanoparticles interacting with natural organic matter. Water Res. (2015) 80:139–48. 10.1016/j.watres.2015.05.009 PubMed DOI
Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Bombelli FB, et al. . Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J Am Chem Soc. (2011) 133:2525–34. 10.1021/ja107583h PubMed DOI
Alaeddine S, Nygren H. Logarithmic Growth of Protein Films. In: Proteins at Interfaces II. Horbett AA, Brash JL. editors. Washington, DC: American Chemical Society; (1995). p. 41–51. 10.1021/bk-1995-0602.ch003 DOI
Slomberg DL, Ollivier P, Miche H, Angeletti B, Bruchet A, Philibert M, et al. . Nanoparticle stability in lake water shaped by natural organic matter properties and presence of particulate matter. Sci Total Environ. (2019) 656:338–46. 10.1016/j.scitotenv.2018.11.279 PubMed DOI
Noventa S, Rowea D, Gallowaya T. Mitigating effect of organic matter on the in vivo toxicity of metal oxide nanoparticles in the marine environment. Environ Sci Nano. (2018) 5:1764–77. 10.1039/C8EN00175H DOI
Guerrini L, Alvarez-Puebla R-A, Pazos-Perez N. Surface modifications of nanoparticles for stability in biological fluids. Materials. (2018) 11:E1154. 10.3390/ma11071154 PubMed DOI PMC
Klinger A, Steinberg D, Kohavi D, Sela MN. Mechanism of adsorption of human albumin to titanium in vitro. J Biomed Mater Res. (1997) 36:387–92.3. 10.1002/(SICI)1097-4636(19970905)36:3<387::AID-JBM13>3.0.CO;2-B PubMed DOI
Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf B Biointerfaces. (2013) 103:395–404. 10.1016/j.colsurfb.2012.10.039 PubMed DOI
Szeto GL, Lavik EB. Materials design at the interface of nanoparticles and innate immunity, J Mater Chem B. (2016) 4:1610–8. 10.1039/C5TB01825K PubMed DOI PMC
Hayashi Y, Miclaus T, Scavenius C, Kwiatkowska K, Sobota A, Engelmann P, et al. . Species differences take shape at nanoparticles: protein corona made of the native repertoire assists cellular interaction. Environ Sci Technol. (2013) 47:14367–75. 10.1021/es404132w PubMed DOI
Lee YK, Choi EJ, Webster TJ, Kim SH, Khang D. Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity. Int J Nanomed. (2014) 10:97–113. 10.2147/IJN.S72998 PubMed DOI PMC
Noll H, Alcedo J, Daube M, Frei E, Schiltz E, Hunt J, et al. . The toposome, essential for sea urchin cell adhesion and development, is a modified iron-less calcium-binding transferrin. Dev Biol. (2007) 310:54–70. 10.1016/j.ydbio.2007.07.016 PubMed DOI
Cervello M, Matranga V. Evidence of a precursor-product relationship between vitellogenin and toposome, a glycoprotein complex mediating cell adhesion. Cell Differ Dev. (1989) 26:67–76. 10.1016/0922-3371(89)90784-3 PubMed DOI
Cervello M, Arizza V, Lattuca G, Parrinello N, Matranga V. Detection of vitellogenin in a subpopulation of sea urchin coelomocytes, Eur J Cell Biol. (1994) 64:314–9. PubMed
Pinsino A, Thorndyke MC, Matranga V. Coelomocytes and post-traumatic response in the common sea star Asterias rubens. Cell Stress Chaperones. (2007) 12:331–41. 10.1379/CSC-288.1 PubMed DOI PMC
Ali N, Mattsson K, Rissler J, Marg Karlsson H, Svensson CR, Gudmundsson A, et al. . Analysis of nanoparticle–protein coronas formed in vitro between nanosized welding particles and nasal lavage proteins. Nanotoxicology. (2016) 10:226–34. 10.3109/17435390.2015.1048324 PubMed DOI PMC
Giau VV, Park YH, Shim KH, Son SW, An SSA. Dynamic changes of protein corona compositions on the surface of zinc oxide nanoparticle in cell culture media. Front Chem Sci Eng. (2019) 13:90–7. 10.1007/s11705-018-1766-z DOI
Levy Y, Arbel-Goren R, Hadari YR, Eshhar S, Ronen D, Elhanany E, et al. . Galectin-8 functions as a matricellular modulator of cell adhesion. J Biol Chem. (2001) 276:31285–95. 10.1074/jbc.M100340200 PubMed DOI
Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell–cell adhesion. J Cell Sci. (2012) 125:3713–22. 10.1242/jcs.099572 PubMed DOI
Zito F, Nakano E, Sciarrino S, Matranga V. Regulative specification of ectoderm in skeleton disrupted sea urchin embryos treated with monoclonal antibody to Pl-nectin. Dev Growth Differ. (2000) 42:499–506. 10.1046/j.1440-169x.2000.00531.x PubMed DOI
Karakostis K, Costa C, Zito F, Matranga V. Heterologous expression of newly identified galectin-8 from sea urchin embryos produces recombinant protein with lactose binding specificity and antiadhesive activity. Sci Rep. (2015) 5:17665 10.1038/srep17665 PubMed DOI PMC
Ribeiro AR, Gemini-Piperni S, Travassos R, Lemgruber L, Silva RC, Rossi AL, et al. . Trojan-like internalization of anatase titanium dioxide nanoparticles by human osteoblast cells. Sci Rep. (2016) 6:23615. 10.1038/srep23615 PubMed DOI PMC
Nunes P, Demaurex N. The role of calcium signaling in phagocytosis. J Leukoc Biol. (2010) 88:57–68. 10.1189/jlb.0110028 PubMed DOI
Walczak CE. Microtubule dynamics and tubulin interacting proteins. Curr Opin Cell Biol. (2000) 12:52–6. 10.1016/S0955-0674(99)00056-3 PubMed DOI
Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. (2000) 29:545–76. 10.1146/annurev.biophys.29.1.545 PubMed DOI
Wloga D, Joachimiak E, Fabczak H. Tubulin post-translational modifications and microtubule dynamics. Int J Mol Sci. (2017) 18:E2207. 10.3390/ijms18102207 PubMed DOI PMC
Ahrens S. Extracellular Actin in Innate Immunity. Doctoral dissertation, UCL (University College London) (2014).
Sandiford SL, Dong Y, Pike A, Blumberg BJ, Bahia AC, Dimopoulos G. Cytoplasmic actin is an extracellular insect immune factor which is secreted upon immune challenge and mediates phagocytosis and direct killing of bacteria, and is a Plasmodium Antagonist. PLoS Pathog. (2015) 11:e1004631. 10.1371/journal.ppat.1004631 PubMed DOI PMC
Vega VL, Rodríguez-Silva M, Frey T, Gehrmann M, Diaz JC, Steinem C, et al. . Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J Immunol. (2008) 180:4299–307. 10.4049/jimmunol.180.6.4299 PubMed DOI
Ono K, Han J. The p38 signal transduction pathway activation and function. Cell Signal. (2000) 12:1–13. 10.1016/S0898-6568(99)00071-6 PubMed DOI
Pinsino A, Matranga V. Sea urchin immune cells as sentinels of environmental stress. Dev Comp Immunol. (2015) 49:198–205. 10.1016/j.dci.2014.11.013 PubMed DOI
Ganeshan K, Chawla A. Metabolic regulation of immune responses. Annu Rev Immunol. (2014) 32:609–34. 10.1146/annurev-immunol-032713-120236 PubMed DOI PMC
Du C, Anderson A, Lortie M, Parsons R, Bodnar A. Oxidative damage and cellular defense mechanisms in sea urchin models of aging. Free Radic Biol Med. (2013) 63:254–63. 10.1016/j.freeradbiomed.2013.05.023 PubMed DOI PMC
Schmid-Hempel P. Variation in immune defence as a question of evolutionary ecology. Proc Proc Biol Sci. (2003) 270:357–66. 10.1098/rspb.2002.2265 PubMed DOI PMC
Moreno-García M, Condé R, Bello-Bedoy R, Lanz-Mendoza H. The damage threshold hypothesis and the immune strategies of insects. Infect Genet Evol. (2014) 24:25–33. 10.1016/j.meegid.2014.02.010 PubMed DOI
Wolfaardt GM, Lawrence JR, Korber DR. Function of EPS. In: Microbial Extracellular Polymeric Substances. Berlin; Heidelberg: Springer; (1999). p. 171–200. 10.1007/978-3-642-60147-7_10 DOI
Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, et al. . Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: role of soluble hemolymph proteins. Environ Res. (2016) 150:73–81. 10.1016/j.envres.2016.05.045 PubMed DOI
Harjunpää H, Llort Asens M, Guenther C, Fagerholm SC. Cell adhesion molecules and their roles and regulation in the immune and tumor microenvironment. Front Immunol. (2019) 10:1078. 10.3389/fimmu.2019.01078 PubMed DOI PMC
In Vitro Interactions of TiO2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment