Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
785219
European Union's Horizon 2020 research and innovation program under grant
881603-GrapheneCore2
European Union's Horizon 2020 research and innovation program under grant
813036
European Union's MSCA-ITN ULTIMATE
PGR05249
Ministry of Foreign Affairs and International Cooperation
20-16124J
Czech Science Foundation
- Keywords
- electrocatalysts, hydrogen evolution reaction, single atom catalyst, tantalum disulfide, water splitting,
- Publication type
- Journal Article MeSH
The nanoengineering of the structure of transition metal dichalcogenides (TMDs) is widely pursued to develop viable catalysts for the hydrogen evolution reaction (HER) alternative to the precious metallic ones. Metallic group-5 TMDs have been demonstrated to be effective catalysts for the HER in acidic media, making affordable real proton exchange membrane water electrolysers. Their key-plus relies on the fact that both their basal planes and edges are catalytically active for the HER. In this work, the 6R phase of TaS2 is "rediscovered" and engineered. A liquid-phase microwave treatment is used to modify the structural properties of the 6R-TaS2 nanoflakes produced by liquid-phase exfoliation. The fragmentation of the nanoflakes and their evolution from monocrystalline to partly polycrystalline structures improve the HER-activity, lowering the overpotential at cathodic current of 10 mA cm-2 from 0.377 to 0.119 V. Furthermore, 6R-TaS2 nanoflakes act as ideal support to firmly trap Pt species, which achieve a mass activity (MA) up 10 000 A gPt -1 at overpotential of 50 mV (20 000 A gPt -1 at overpotentials of 72 mV), representing a 20-fold increase of the MA of Pt measured for the Pt/C reference, and approaching the state-of-the-art of the Pt mass activity.
BeDimensional Spa via Albisola 121 Genova 16163 Italy
Electron Microscopy Facility Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
Graphene Labs Istituto Italiano di Tecnologia via Morego 30 Genova 16163 Italy
Materials Characterization Facility Istituto Italiano di Tecnologia via Morego 30 Genova 16163 Italy
NanoChemistry Istituto Italiano di Tecnologia via Morego 30 Genova 16163 Italy
See more in PubMed
D. P. Gregory, Sci. Am. 1973, 228, 13.
M. Ball, M. Weeda, Int. J. Hydrogen Energy 2015, 40, 7903.
O. Schmidt, A. Gambhir, I. Staffell, A. Hawkes, J. Nelson, S. Few, Int. J. Hydrogen Energy 2017, 42, 30470.
M. Schalenbach, G. Tjarks, M. Carmo, W. Lueke, M. Mueller, D. Stolten, J. Electrochem. Soc. 2016, 163, F3197.
K. Zeng, D. Zhang, Prog. Energy Combust. Sci. 2010, 36, 307.
K. C. Neyerlin, W. Gu, J. Jorne, H. A. Gasteiger, J. Electrochem. Soc. 2007, 154, B631.
J. Durst, C. Simon, F. Hasche, H. A. Gasteiger, J. Electrochem. Soc. 2015, 162, F190.
T. Reier, M. Oezaslan, P. Strasser, ACS Catal. 2012, 2,1765.
S. Cherevko, S. Geiger, O. Kasian, N. Kulyk, J.-P. Grote, A. Savan, B. R. Shrestha, S. Merzlikin, B. Breitbach, A. Ludwig, K. J. J. Mayrhofer, Catal. Today 2016, 262, 170.
C. Sealy, Mater. Today 2008, 11, 65.
C. G. Morales-Guio, L.-A. Stern, X. Hu, Chem. Soc. Rev. 2014, 43, 6555.
X. Zou, Y. Zhang, Chem. Soc. Rev. 2015, 44, 5148.
J. Kibsgaard, I. Chorkendorff, Nat. Energy 2019, 4, 430.
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, Adv. Mater. 2016, 28, 1917.
T. F. Jaramillo, K. P. Jørgensen, J. Bonde, J. H. Nielsen, S. Horch, I. Chorkendorff, Science 2007, 317, 100.
D. Voiry, M. Salehi, R. Silva, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, M. Chhowalla, Nano Lett. 2013, 13, 6222.
J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963.
H. Li, C. Tsai, A. L. Koh, L. Cai, A. W. Contryman, A. H. Fragapane, J. Zhao, H. S. Han, H. C. Manoharan, F. Abild-Pedersen, J. K. Nørskov, X. Zheng, Nat. Mater. 2016, 15, 48.
C. Tsai, K. Chan, F. Abild-Pedersen, J. K. Nørskov, Phys. Chem. Chem. Phys. 2014, 16, 13156.
Y. Liu, J. Wu, K. P. Hackenberg, J. Zhang, Y. M. Wang, Y. Yang, K. Keyshar, J. Gu, T. Ogitsu, R. Vajtai, J. Lou, P. M. Ajayan, B. C. Wood, B. I. Yakobson, Nat. Energy 2017, 2,17127.
J. Shi, X. Wang, S. Zhang, L. Xiao, Y. Huan, Y. Gong, Z. Zhang, Y. Li, X. Zhou, M. Hong, Q. Fang, Q. Zhang, X. Liu, L. Gu, Z. Liu, Y. Zhang, Nat. Commun. 2017, 8, 958.
C. Tsai, K. Chan, J. K. Nørskov, F. Abild-Pedersen, Surf. Sci. 2015, 640,133.
H. Pan, Sci. Rep. 2015, 4, 5348.
B. Han, S. H. Noh, D. Choi, M. H. Seo, J. Kang, J. Hwang, J. Mater. Chem. A 2018, 6, 20005.
L. Najafi, S. Bellani, R. Oropesa-Nuñez, B. Martín-García, M. Prato, L. Pasquale, J.-K. Panda, P. Marvan, Z. Sofer, F. Bonaccorso, ACS Catal. 2020, 10, 3313.
J. Zhang, J. Wu, X. Zou, K. Hackenberg, W. Zhou, W. Chen, J. Yuan, K. Keyshar, G. Gupta, A. Mohite, P. M. Ajayan, J. Lou, Mater. Today 2019, 25, 28.
Y. Feng, K. Yu, Z. Zhu, CrystEngComm 2019, 21, 3517.
D. N. Chirdon, Y. Wu, Nat. Energy 2017, 2, 17132.
L. Najafi, S. Bellani, R. Oropesa-Nunez, B. Martín-García, M. Prato, V. Mazanek, D. Debellis, S. Lauciello, R. Brescia, Z. Sofer, F. Bonaccorso, J. Mater. Chem. A 2019, 7, 25593.
J. Hwang, S. H. Noh, B. Han, Appl. Surf. Sci. 2019, 471, 545.
C. Backes, C. Backes, A. M. Abdelkader, C. Alonso, A. Andrieux-Ledier, R. Arenal, J. Azpeitia, N. Balakrishnan, L. Banszerus, J. Barjon, R. Bartali, S. Bellani, C. Berger, R. Berger, M. M. Bernal Ortega, C. Bernard, P. H. Beton, A. Beyer, A. Bianco, P. Bøggild, F. Bonaccorso, G. Borin Barin, C. Botas, R. A. Bueno, D. Carriazo, A. Castellanos-Gomez, M. Christian, A. Ciesielski, T. Ciuk, M. T. Cole, J. Coleman, C. Coletti, L. Crema, H. Cun, D. Dasler, D. De Fazio, N. Díez, S. Drieschner, et al., 2D Mater. 2020, 7, 022001.
In order to avoid any cause of damage to previous works and companies, we purposely decide to not report any reference on this topic.
Preparation and Crystal Growth of Materials with Layered Structures, Vol. 1 (Ed. R. M. A. Lieth), Springer Science & Business Media, Dordrecht, Netherlands 1977.
J. A. Wilson, F. J. Di Salvo, S. Mahajan, Adv. Phys. 1975, 32, 882.
T. Shimada, F. S. Ohuchi, A. Koma, Surf. Sci. 1993, 291, 57.
E. Figueroa, Y. K. Kuo, A. Olinger, M. A. Lloyd, L. D. Bastin, S. Petrotsatos, Q. Chen, B. Dobbs, S. Dev, J. P. Selegue, L. E. DeLong, C. P. Brock, J. W. Brill, J. Solid State Chem. 1995, 114, 486.
S. F. Meyer, R. E. Howard, G. R. Stewart, J. V. Acrivos, T. H. Geballe, J. Chem. Phys. 1975, 62, 4411.
A. R. Beal, J. Phys. C: Solid State Phys. 1978, 11, 4583.
X. Chia, A. Ambrosi, P. Lazar, Z. Sofer, M. Pumera, J. Mater. Chem. A 2016, 4, 14241.
K. Hayashi, A. Kawamura, Mater. Res. Bull. 1986, 21, 1405.
J. Luxa, V. Mazánek, M. Pumera, P. Lazar, D. Sedmidubský, M. Callisti, T. Polcar, Z. Sofer, Chem. Eur. J. 2017, 23, 8082.
F. Bonaccorso, A. Bartolotta, J. N. Coleman, C. Backes, Adv. Mater. 2016, 28, 6136.
O. M. Maragó, F. Bonaccorso, R. Saija, G. Privitera, P. G. Gucciardi, M. A. Iatì, G. Calogero, P. H. Jones, F. Borghese, P. Denti, V. Nicolosi, A. C. Ferrari, ACS Nano 2010, 4, 7515.
D. Dallinger, C. O. Kappe, Chem. Rev. 2007, 107, 2563.
M. Q. Ning, M. M. Lu, J. B. Li, Z. Chen, Y. K. Dou, C. Z. Wang, F. Rehman, M. S. Cao, H. B. Jin, Nanoscale 2015, 7, 15734.
D. Zhang, Y. Jia, J. Cheng, S. Chen, J. Chai, X. Yang, Z. Wu, H. Wang, W. Zhang, Z. Zhao, C. Han, M. Cao, G. P. Zheng, J. Alloys Compd. 2018, 758, 62.
R. W. Sillars, J. Inst. Electr. Eng. [1889-1940] 1937, 80, 378.
X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 2016, 4, 6816.
E. Hirota, J. Phys. Chem. 1979, 83, 1457.
E. Navarro-Moratalla, J. O. Island, S. Mañas-Valero, E. Pinilla-Cienfuegos, A. Castellanos-Gomez, J. Quereda, G. Rubio-Bollinger, L. Chirolli, J. A. Silva-Guillén, N. Agraït, G. A. Steele, F. Guinea, H. S. J. van der Zant, E. Coronado, Nat. Commun. 2016, 7, 11043.
Z. Zeng, C. Tan, X. Huang, S. Bao, H. Zhang, Energy Environ. Sci. 2014, 7, 797.
A. V. Naumkin, A. Kraut-Vass, C. J. Powell, S. W. Gaarenstroom, NIST Standard Reference Database 20 version 4.1 2012.
Z. Wang, Y. Y. Sun, I. Abdelwahab, L. Cao, W. Yu, H. Ju, J. Zhu, W. Fu, L. Chu, H. Xu, K. P. Loh, ACS Nano 2018, 12, 12619.
R. Hovden, A. W. Tsen, P. Liu, B. H. Savitzky, I. E. l. Baggari, Y. Liu, W. Lu, Y. Sun, P. Kim, A. N. Pasupathy, L. F. Kourkoutis, Proc. Natl. Acad. Sci. USA 2016, 113, 11420.
R. V. Gonçalves, R. Wojcieszak, P. M. Uberman, S. R. Teixeira, L. M. Rossi, Phys. Chem. Chem. Phys. 2014, 16, 5755.
S. Hellmann, M. Beye, C. Sohrt, T. Rohwer, F. Sorgenfrei, H. Redlin, M. Kalläne, M. Marczynski-Bühlow, F. Hennies, M. Bauer, A. Föhlisch, L. Kipp, W. Wurth, K. Rossnagel, Phys. Rev. Lett. 2010, 105, 187401.
M. Wahlqvist, A. Shchukarev, J. Electron Spectrosc. Relat. Phenom. 2007, 156, 310.
K. Persson, P. Materials, Materials Data on TaS2 (SG:194) by Materials Project, United States 2015, https://www.osti.gov/dataexplorer/biblio/dataset/1195033.
J. C. H. Spence, High-Resolution Electron Microscopy, 4th ed., Oxford University Press, Oxford, UK, 2010.
M. Precner, T. Polaković, Q. Qiao, D. J. Trainer, A. V. Putilov, C. Di Giorgio, I. Cone, Y. Zhu, X. X. Xi, M. Iavarone, G. Karapetrov, Sci. Rep. 2018, 8, 6724.
J. Chen, S. Zhou, Y. Wen, G. H. Ryu, C. Allen, Y. Lu, A. I. Kirkland, J. H. Warner, Nanoscale 2019, 11, 1901.
H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A. V. Krasheninnikov, Phys. Rev. B 2013, 88, 35301.
A. Azizi, X. Zou, P. Ercius, Z. Zhang, A. L. Elías, N. Perea-López, G. Stone, M. Terrones, B. I. Yakobson, N. Alem, Nat. Commun. 2014, 5, 4867.
J. Lin, S. T. Pantelides, W. Zhou, ACS Nano 2015, 9, 5189.
L. Najafi, S. Bellani, R. Oropesa-Nuñez, A. Ansaldo, M. Prato, A. E. Del Rio Castillo, F. Bonaccorso, Adv. Energy Mater. 2018, 8, 1801764.
B. Martín-García, D. Spirito, S. Bellani, M. Prato, V. Romano, A. Polovitsyn, R. Brescia, R. Oropesa-Nuñez, L. Najafi, A. Ansaldo, G. D'Angelo, V. Pellegrini, R. Krahne, I. Moreels, F. Bonaccorso, Small 2019, 15, 1904670.
F. Xi, P. Bogdanoff, K. Harbauer, P. Plate, C. Höhn, J. Rappich, B. Wang, X. Han, R. van de Krol, S. Fiechter, ACS Catal. 2019, 9, 2368.
S. Anantharaj, S. R. Ede, K. Karthick, S. Sam Sankar, K. Sangeetha, P. E. Karthik, S. Kundu, Energy Environ. Sci. 2018, 11, 744.
C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem. Soc. 2013, 135, 16977.
S. Trasatti, O. A. Petrii, J. Electroanal. Chem. 1992, 327, 353.
C. Greenhow, W. V. Smith, J. Chem. Phys. 1951, 19, 1298.
I. M. K. Ismail, Langmuir 1992, 8, 360.
K. Tang, X. Wang, Q. Li, C. Yan, Adv. Mater. 2018, 30, 1704779.
J. Yang, A. R. Mohmad, Y. Wang, R. Fullon, X. Song, F. Zhao, I. Bozkurt, M. Augustin, E. J. G. Santos, H. S. Shin, W. Zhang, D. Voiry, H. Y. Jeong, M. Chhowalla, Nat. Mater. 2019, 18, 1309.
J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, G. Wang, Nat. Catal. 2018, 1, 985.
L. Najafi, S. Bellani, A. Castelli, M. P. Arciniegas, R. Brescia, R. Oropesa-Nuñez, B. Martín-García, M. Serri, F. Drago, L. Manna, F. Bonaccorso, Chem. Mater. 2020, 32, 2420.
N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, L. M. Liu, G. A. Botton, X. Sun, Nat. Commun. 2016, 7, 13638.
J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, X. Bao, Energy Environ. Sci. 2015, 8, 1594.
H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong, X. W. Lou, Sci. Adv. 2018, 4, 6657.
X. Cheng, Y. Li, L. Zheng, Y. Yan, Y. Zhang, G. Chen, S. Sun, J. Zhang, Energy Environ. Sci. 2017, 10, 2450.
L. Zhang, L. Han, H. Liu, X. Liu, J. Luo, Angew. Chem., Int. Ed. 2017, 56, 13694.
A. H. Ghanim, J. G. Koonce, B. Hasa, A. M. Rassoolkhani, W. Cheng, D. W. Peate, J. Lee, S. Mubeen, Front. Chem. 2018, 6, 523.
H. Tian, X. Cui, L. Zeng, L. Su, Y. Song, J. Shi, J. Mater. Chem. A 2019, 7, 6285.
A. Jagminas, A. Naujokaitis, R. Žalneravičius, V. Jasulaitiene, G. Valušis, Appl. Surf. Sci. 2016, 385, 56.
C. Kittel, Introduction to Solid State Physics, 8th ed., John Wiley & Sons, New York, NY 2004.
E. Roduner, Chem. Soc. Rev. 2006, 35, 583.
J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23.
Y. H. Fang, Z. P. Liu, ACS Catal. 2014, 4, 4364.
Beyond the Platinum Era─Scalable Preparation and Electrochemical Activation of TaS2 Flakes
Two-Dimensional Gallium Sulfide Nanoflakes for UV-Selective Photoelectrochemical-type Photodetectors