Rapid and Universal Synthesis of 2D Transition Metal (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Sulfides through Oxide Sulfurization in CS2 Vapor
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
38655681
PubMed Central
PMC11080058
DOI
10.1021/acs.inorgchem.4c00475
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.
CENAB Faculty of Science J E Purkyne University Usti nad Labem 40096 Czech Republic
Central Laboratories University of Chemistry and Technology Prague 166 28 Czech Republic
Faculty of Mathematics and Physics Charles University Prague 12116 Czech Republic
New Technologies Research Centre University of West Bohemia Univerzitní 8 Plzeň 30614 Czech Republic
See more in PubMed
Cai X.; Luo Y.; Liu B.; Cheng H.-M. Preparation of 2D Material Dispersions and Their Applications. Chem. Soc. Rev. 2018, 47 (16), 6224–6266. 10.1039/C8CS00254A. PubMed DOI
Miró P.; Audiffred M.; Heine T. An Atlas of Two-Dimensional Materials. Chem. Soc. Rev. 2014, 43 (18), 6537–6554. 10.1039/C4CS00102H. PubMed DOI
Zhu S.; Gong L.; Xie J.; Gu Z.; Zhao Y. Design, Synthesis, and Surface Modification of Materials Based on Transition-Metal Dichalcogenides for Biomedical Applications. Small Methods 2017, 1, 170022010.1002/smtd.201700220. DOI
Kim D.; Pandey J.; Jeong J.; Cho W.; Lee S.; Cho S.; Yang H. Phase Engineering of 2D Materials. Chem. Rev. 2023, 123, 11230–11268. 10.1021/acs.chemrev.3c00132. PubMed DOI
Liu Y.; Xiao C.; Li Z.; Xie Y. Vacancy Engineering for Tuning Electron and Phonon Structures of Two-Dimensional Materials. Adv. Energy Mater. 2016, 6 (23), 160043610.1002/aenm.201600436. DOI
Zhao B.; Shen D.; Zhang Z.; Lu P.; Hossain M.; Li J.; Li B.; Duan X. 2D Metallic Transition-Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Adv. Funct. Mater. 2021, 31 (48), 210513210.1002/adfm.202105132. DOI
Chhowalla M.; Shin H. S.; Eda G.; Li L. J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263.10.1038/nchem.1589. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Brescia R.; Prato M.; Pasquale L.; Demirci C.; Drago F.; Martín-García B.; Luxa J.; Manna L.; Sofer Z.; Bonaccorso F. Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction. Small 2020, 16 (50), 200337210.1002/smll.202003372. PubMed DOI
Kolobov A. V.; Tominaga J.. Two-Dimensional Transition-Metal Dichalcogenides; Springer Series in Materials Science; Springer International Publishing: Cham, 2016; Vol. 239. 10.1007/978-3-319-31450-1. DOI
Guo B.; Xiao Q. L.; Wang S. H.; Zhang H. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev. 2019, 13 (12), 180032710.1002/lpor.201800327. DOI
Hemmat Z.; Cavin J.; Ahmadiparidari A.; Ruckel A.; Rastegar S.; Misal S. N.; Majidi L.; Kumar K.; Wang S.; Guo J.; Dawood R.; Lagunas F.; Parajuli P.; Ngo A. T.; Curtiss L. A.; Cho S. B.; Cabana J.; Klie R. F.; Mishra R.; Salehi-Khojin A. Quasi-Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application. Adv. Mater. 2020, 32 (26), 190704110.1002/adma.201907041. PubMed DOI
Buckingham M. A.; Ward-O’Brien B.; Xiao W.; Li Y.; Qu J.; Lewis D. J. High Entropy Metal Chalcogenides: Synthesis, Properties, Applications and Future Directions. Chem. Commun. 2022, 58 (58), 8025–8037. 10.1039/D2CC01796B. PubMed DOI
Ma J.; Deng K.; Zheng L.; Wu S.; Liu Z.; Zhou S.; Sun D. Experimental Progress on Layered Topological Semimetals. 2D Mater. 2019, 6 (3), 03200110.1088/2053-1583/ab0902. DOI
Reshak A. H.; Auluck S. Electronic and Optical Properties of the 1 T Phases of TiS2, TiSe2, and TiTe2. Phys. Rev. B 2003, 68 (24), 24511310.1103/PhysRevB.68.245113. DOI
Sumesh C. K.; Peter S. C. Two-Dimensional Semiconductor Transition Metal Based Chalcogenide Based Heterostructures for Water Splitting Applications. Dalton Trans. 2019, 48 (34), 12772–12802. 10.1039/C9DT01581G. PubMed DOI
Guo Y.; Deng H.; Sun X.; Li X.; Zhao J.; Wu J.; Chu W.; Zhang S.; Pan H.; Zheng X.; Wu X.; Jin C.; Wu C.; Xie Y. Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van Der Waals Interaction Engineering. Adv. Mater. 2017, 29 (29), 170071510.1002/adma.201700715. PubMed DOI
van Efferen C.; Murray C.; Fischer J.; Busse C.; Komsa H. P.; Michely T.; Jolie W. Metal-Insulator Transition in Monolayer MoS2 via Contactless Chemical Doping. 2D Mater. 2022, 9 (2), 02502610.1088/2053-1583/ac5d0f. DOI
Chia X.; Ambrosi A.; Sofer Z.; Luxa J.; Pumera M. Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. ACS Nano 2015, 9 (5), 5164–5179. 10.1021/acsnano.5b00501. PubMed DOI
Lu Q.; Yu Y.; Ma Q.; Chen B.; Zhang H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv. Mater. 2016, 28 (10), 1917–1933. 10.1002/adma.201503270. PubMed DOI
Ma C.; Fang P.; Liu Z.-R.; Xu S.-S.; Xu K.; Cheng X.; Lei A.; Xu H.-C.; Zeng C.; Mei T.-S. Recent Advances in Organic Electrosynthesis Employing Transition Metal Complexes as Electrocatalysts. Sci. Bull. 2021, 66 (23), 2412–2429. 10.1016/j.scib.2021.07.011. PubMed DOI
Fu Q.; Han J.; Wang X.; Xu P.; Yao T.; Zhong J.; Zhong W.; Liu S.; Gao T.; Zhang Z.; Xu L.; Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021, 33 (6), 190781810.1002/adma.201907818. PubMed DOI PMC
Hu Z.; Tai Z.; Liu Q.; Wang S.-W.; Jin H.; Wang S.; Lai W.; Chen M.; Li L.; Chen L.; Tao Z.; Chou S.-L. Ultrathin 2D TiS2 Nanosheets for High Capacity and Long-Life Sodium Ion Batteries. Adv. Energy Mater. 2019, 9 (8), 180321010.1002/aenm.201803210. DOI
Whittingham M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126–1127. 10.1126/science.192.4244.1126. PubMed DOI
Chen B.; Chao D.; Liu E.; Jaroniec M.; Zhao N.; Qiao S.-Z. Transition Metal Dichalcogenides for Alkali Metal Ion Batteries: Engineering Strategies at the Atomic Level. Energy Environ. Sci. 2020, 13 (4), 1096–1131. 10.1039/C9EE03549D. DOI
Mattinen M.; Popov G.; Vehkamäki M.; King P. J.; Mizohata K.; Jalkanen P.; Räisänen J.; Leskelä M.; Ritala M. Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronics. Chem. Mater. 2019, 31 (15), 5713–5724. 10.1021/acs.chemmater.9b01688. DOI
Mak K. F.; He K.; Shan J.; Heinz T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7 (8), 494–498. 10.1038/nnano.2012.96. PubMed DOI
Chen M.; Liu D.; Du X.; Lo K. H.; Wang S.; Zhou B.; Pan H. 2D Materials: Excellent Substrates for Surface-Enhanced Raman Scattering (SERS) in Chemical Sensing and Biosensing. TrAC Trends Anal. Chem. 2020, 130, 11598310.1016/j.trac.2020.115983. DOI
Song X.; Wang Y.; Zhao F.; Li Q.; Ta H. Q.; Rümmeli M. H.; Tully C. G.; Li Z.; Yin W.-J.; Yang L.; Lee K.-B.; Yang J.; Bozkurt I.; Liu S.; Zhang W.; Chhowalla M. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. ACS Nano 2019, 13 (7), 8312–8319. 10.1021/acsnano.9b03761. PubMed DOI
Guselnikova O.; Lim H.; Kim H.-J.; Kim S. H.; Gorbunova A.; Eguchi M.; Postnikov P.; Nakanishi T.; Asahi T.; Na J.; Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18 (25), 210718210.1002/smll.202107182. PubMed DOI
Sofer Z.; Sedmidubský D.; Luxa J.; Bouša D.; Huber Š.; Lazar P.; Veselý M.; Pumera M. Universal Method for Large-Scale Synthesis of Layered Transition Metal Dichalcogenides. Chem.—Eur. J. 2017, 23 (42), 10177–10186. 10.1002/chem.201701628. PubMed DOI
Tang L.; Tan J.; Nong H.; Liu B.; Cheng H.-M. Chemical Vapor Deposition Growth of Two-Dimensional Compound Materials: Controllability, Material Quality, and Growth Mechanism. Acc. Mater. Res. 2021, 2 (1), 36–47. 10.1021/accountsmr.0c00063. DOI
Sun L.; Yuan G.; Gao L.; Yang J.; Chhowalla M.; Gharahcheshmeh M. H.; Gleason K. K.; Choi Y. S.; Hong B. H.; Liu Z. Chemical Vapour Deposition. Nat. Rev. Methods Primers 2021, 1 (1), 5.10.1038/s43586-020-00005-y. DOI
Han J. H.; Kwak M.; Kim Y.; Cheon J. Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chem. Rev. 2018, 118 (13), 6151–6188. 10.1021/acs.chemrev.8b00264. PubMed DOI
Buravets V.; Hosek F.; Lapcak L.; Miliutina E.; Sajdl P.; Elashnikov R.; Švorčík V.; Lyutakov O. Beyond the Platinum Era—Scalable Preparation and Electrochemical Activation of TaS2 Flakes. ACS Appl. Mater. Interfaces 2023, 15 (4), 5679–5686. 10.1021/acsami.2c20261. PubMed DOI PMC
Waqas M.; Younis J.; Awais M.; Nazar N.; Hussain S.; Murtaza S.; Yasmin N.; Ashiq M. N.; Mirza M.; Safdar M. CrS2-Modulated Enhanced Catalytic Properties of CdS/MoS2 Heterostructures Toward Photodegradation and Electrochemical OER Kinetics. Energy Fuels 2022, 36 (15), 8391–8401. 10.1021/acs.energyfuels.2c01821. DOI
Nabi G.; Riaz K. N.; Nazir M.; Raza W.; Tahir M. B.; Rafique M.; Malik N.; Siddiqa A.; Ali Gillani S. S.; Rizwan M.; Shakil M.; Tanveer M. Cogent Synergic Effect of TiS2/g-C3N4 Composite with Enhanced Electrochemical Performance for Supercapacitor. Ceramics Internat. 2020, 46 (17), 27601–27607. 10.1016/j.ceramint.2020.07.254. DOI
Nabi G.; Ali W.; Tanveer M.; Iqbal T.; Rizwan M.; Hussain S. Robust Synergistic Effect of TiS2/MoS2 Hierarchal Micro-Flowers Composite Realizing Enhanced Electrochemical Performance. J. Energy Storage 2023, 58, 10631610.1016/j.est.2022.106316. DOI
Li T.; Guo W.; Ma L.; Li W.; Yu Z.; Han Z.; Gao S.; Liu L.; Fan D.; Wang Z.; Yang Y.; Lin W.; Luo Z.; Chen X.; Dai N.; Tu X.; Pan D.; Yao Y.; Wang P.; Nie Y.; Wang J.; Shi Y.; Wang X. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire. Nat. Nanotechnol. 2021, 16 (11), 1201–1207. 10.1038/s41565-021-00963-8. PubMed DOI
Zhou J.; Lin J.; Huang X.; Zhou Y.; Chen Y.; Xia J.; Wang H.; Xie Y.; Yu H.; Lei J.; Wu D.; Liu F.; Fu Q.; Zeng Q.; Hsu C.-H.; Yang C.; Lu L.; Yu T.; Shen Z.; Lin H.; Yakobson B. I.; Liu Q.; Suenaga K.; Liu G.; Liu Z. A Library of Atomically Thin Metal Chalcogenides. Nature 2018, 556 (7701), 355–359. 10.1038/s41586-018-0008-3. PubMed DOI
Wang H.; Lv W.; Shi J.; Wang H.; Wang D.; Jin L.; Chao J.; van Aken P. A.; Chen R.; Huang W. Efficient Liquid Nitrogen Exfoliation of MoS2 Ultrathin Nanosheets in the Pure 2H Phase. ACS Sustainable Chem. Eng. 2020, 8 (1), 84–90. 10.1021/acssuschemeng.9b04057. DOI
Kertesz M.; Hoffmann R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106 (12), 3453–3460. 10.1021/ja00324a012. DOI
Rasmussen F. A.; Thygesen K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119 (23), 13169–13183. 10.1021/acs.jpcc.5b02950. DOI
Yu Q.; Zhang Z.; Qiu S.; Luo Y.; Liu Z.; Yang F.; Liu H.; Ge S.; Zou X.; Ding B.; Ren W.; Cheng H.-M.; Sun C.; Liu B. A Ta-TaS2 Monolith Catalyst with Robust and Metallic Interface for Superior Hydrogen Evolution. Nat. Commun. 2021, 12 (1), 6051.10.1038/s41467-021-26315-7. PubMed DOI PMC
Teng C.; Yu Q.; Sun Y.; Ding B.; Chen W.; Zhang Z.; Liu B.; Cheng H.-M. Homologous Gradient Heterostructure-Based Artificial Synapses for Neuromorphic Computation. InfoMat 2023, 5 (1), e1235110.1002/inf2.12351. DOI