• This record comes from PubMed

Rapid and Universal Synthesis of 2D Transition Metal (Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) Sulfides through Oxide Sulfurization in CS2 Vapor

. 2024 May 06 ; 63 (18) : 8215-8221. [epub] 20240424

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Transition metal (TM) sulfides belong to the class of 2D materials with a wide application range. Various methods, including solvothermal, hydrothermal, chemical vapor deposition, and quartz ampoule-based approaches, have been employed for the synthesis of TM sulfides. Some of them face limitations due to the low stability of TM sulfides and their susceptibility to oxidation, and others require more sophisticated equipment or complex and rare precursors or are not scalable. In this work, we propose an alternative approach for the synthesis of 2D TM sulfides by sulfurization of corresponding metal oxides in the vapor of CS2 at elevated temperature. Subsequent treatment in liquid nitrogen allows exfoliation of created sulfides to a 2D structure. A proposed approach was successfully applied to nine transition metals: Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W. The resulting materials were extensively characterized using various analytical techniques with a focus on their crystalline structure and 2D nature. Our approach offers several advantages including the use of simple precursors (CS2 and metal oxides), universality (in all cases, the sulfides were obtained), equipment simplicity (tube furnace and quartz reactor), short preparation time (3 h), and the ability of morphology and phase tuning (in particular cases) of the created materials by adjusting the temperature. In addition, gram-scale bulk materials can be obtained in the entry-level laboratories using the proposed approach.

See more in PubMed

Cai X.; Luo Y.; Liu B.; Cheng H.-M. Preparation of 2D Material Dispersions and Their Applications. Chem. Soc. Rev. 2018, 47 (16), 6224–6266. 10.1039/C8CS00254A. PubMed DOI

Miró P.; Audiffred M.; Heine T. An Atlas of Two-Dimensional Materials. Chem. Soc. Rev. 2014, 43 (18), 6537–6554. 10.1039/C4CS00102H. PubMed DOI

Zhu S.; Gong L.; Xie J.; Gu Z.; Zhao Y. Design, Synthesis, and Surface Modification of Materials Based on Transition-Metal Dichalcogenides for Biomedical Applications. Small Methods 2017, 1, 170022010.1002/smtd.201700220. DOI

Kim D.; Pandey J.; Jeong J.; Cho W.; Lee S.; Cho S.; Yang H. Phase Engineering of 2D Materials. Chem. Rev. 2023, 123, 11230–11268. 10.1021/acs.chemrev.3c00132. PubMed DOI

Liu Y.; Xiao C.; Li Z.; Xie Y. Vacancy Engineering for Tuning Electron and Phonon Structures of Two-Dimensional Materials. Adv. Energy Mater. 2016, 6 (23), 160043610.1002/aenm.201600436. DOI

Zhao B.; Shen D.; Zhang Z.; Lu P.; Hossain M.; Li J.; Li B.; Duan X. 2D Metallic Transition-Metal Dichalcogenides: Structures, Synthesis, Properties, and Applications. Adv. Funct. Mater. 2021, 31 (48), 210513210.1002/adfm.202105132. DOI

Chhowalla M.; Shin H. S.; Eda G.; Li L. J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 263.10.1038/nchem.1589. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Brescia R.; Prato M.; Pasquale L.; Demirci C.; Drago F.; Martín-García B.; Luxa J.; Manna L.; Sofer Z.; Bonaccorso F. Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction. Small 2020, 16 (50), 200337210.1002/smll.202003372. PubMed DOI

Kolobov A. V.; Tominaga J.. Two-Dimensional Transition-Metal Dichalcogenides; Springer Series in Materials Science; Springer International Publishing: Cham, 2016; Vol. 239. 10.1007/978-3-319-31450-1. DOI

Guo B.; Xiao Q. L.; Wang S. H.; Zhang H. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photonics Rev. 2019, 13 (12), 180032710.1002/lpor.201800327. DOI

Hemmat Z.; Cavin J.; Ahmadiparidari A.; Ruckel A.; Rastegar S.; Misal S. N.; Majidi L.; Kumar K.; Wang S.; Guo J.; Dawood R.; Lagunas F.; Parajuli P.; Ngo A. T.; Curtiss L. A.; Cho S. B.; Cabana J.; Klie R. F.; Mishra R.; Salehi-Khojin A. Quasi-Binary Transition Metal Dichalcogenide Alloys: Thermodynamic Stability Prediction, Scalable Synthesis, and Application. Adv. Mater. 2020, 32 (26), 190704110.1002/adma.201907041. PubMed DOI

Buckingham M. A.; Ward-O’Brien B.; Xiao W.; Li Y.; Qu J.; Lewis D. J. High Entropy Metal Chalcogenides: Synthesis, Properties, Applications and Future Directions. Chem. Commun. 2022, 58 (58), 8025–8037. 10.1039/D2CC01796B. PubMed DOI

Ma J.; Deng K.; Zheng L.; Wu S.; Liu Z.; Zhou S.; Sun D. Experimental Progress on Layered Topological Semimetals. 2D Mater. 2019, 6 (3), 03200110.1088/2053-1583/ab0902. DOI

Reshak A. H.; Auluck S. Electronic and Optical Properties of the 1 T Phases of TiS2, TiSe2, and TiTe2. Phys. Rev. B 2003, 68 (24), 24511310.1103/PhysRevB.68.245113. DOI

Sumesh C. K.; Peter S. C. Two-Dimensional Semiconductor Transition Metal Based Chalcogenide Based Heterostructures for Water Splitting Applications. Dalton Trans. 2019, 48 (34), 12772–12802. 10.1039/C9DT01581G. PubMed DOI

Guo Y.; Deng H.; Sun X.; Li X.; Zhao J.; Wu J.; Chu W.; Zhang S.; Pan H.; Zheng X.; Wu X.; Jin C.; Wu C.; Xie Y. Modulation of Metal and Insulator States in 2D Ferromagnetic VS2 by van Der Waals Interaction Engineering. Adv. Mater. 2017, 29 (29), 170071510.1002/adma.201700715. PubMed DOI

van Efferen C.; Murray C.; Fischer J.; Busse C.; Komsa H. P.; Michely T.; Jolie W. Metal-Insulator Transition in Monolayer MoS2 via Contactless Chemical Doping. 2D Mater. 2022, 9 (2), 02502610.1088/2053-1583/ac5d0f. DOI

Chia X.; Ambrosi A.; Sofer Z.; Luxa J.; Pumera M. Catalytic and Charge Transfer Properties of Transition Metal Dichalcogenides Arising from Electrochemical Pretreatment. ACS Nano 2015, 9 (5), 5164–5179. 10.1021/acsnano.5b00501. PubMed DOI

Lu Q.; Yu Y.; Ma Q.; Chen B.; Zhang H. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions. Adv. Mater. 2016, 28 (10), 1917–1933. 10.1002/adma.201503270. PubMed DOI

Ma C.; Fang P.; Liu Z.-R.; Xu S.-S.; Xu K.; Cheng X.; Lei A.; Xu H.-C.; Zeng C.; Mei T.-S. Recent Advances in Organic Electrosynthesis Employing Transition Metal Complexes as Electrocatalysts. Sci. Bull. 2021, 66 (23), 2412–2429. 10.1016/j.scib.2021.07.011. PubMed DOI

Fu Q.; Han J.; Wang X.; Xu P.; Yao T.; Zhong J.; Zhong W.; Liu S.; Gao T.; Zhang Z.; Xu L.; Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021, 33 (6), 190781810.1002/adma.201907818. PubMed DOI PMC

Hu Z.; Tai Z.; Liu Q.; Wang S.-W.; Jin H.; Wang S.; Lai W.; Chen M.; Li L.; Chen L.; Tao Z.; Chou S.-L. Ultrathin 2D TiS2 Nanosheets for High Capacity and Long-Life Sodium Ion Batteries. Adv. Energy Mater. 2019, 9 (8), 180321010.1002/aenm.201803210. DOI

Whittingham M. S. Electrical Energy Storage and Intercalation Chemistry. Science 1976, 192 (4244), 1126–1127. 10.1126/science.192.4244.1126. PubMed DOI

Chen B.; Chao D.; Liu E.; Jaroniec M.; Zhao N.; Qiao S.-Z. Transition Metal Dichalcogenides for Alkali Metal Ion Batteries: Engineering Strategies at the Atomic Level. Energy Environ. Sci. 2020, 13 (4), 1096–1131. 10.1039/C9EE03549D. DOI

Mattinen M.; Popov G.; Vehkamäki M.; King P. J.; Mizohata K.; Jalkanen P.; Räisänen J.; Leskelä M.; Ritala M. Atomic Layer Deposition of Emerging 2D Semiconductors, HfS2 and ZrS2, for Optoelectronics. Chem. Mater. 2019, 31 (15), 5713–5724. 10.1021/acs.chemmater.9b01688. DOI

Mak K. F.; He K.; Shan J.; Heinz T. F. Control of Valley Polarization in Monolayer MoS2 by Optical Helicity. Nat. Nanotechnol. 2012, 7 (8), 494–498. 10.1038/nnano.2012.96. PubMed DOI

Chen M.; Liu D.; Du X.; Lo K. H.; Wang S.; Zhou B.; Pan H. 2D Materials: Excellent Substrates for Surface-Enhanced Raman Scattering (SERS) in Chemical Sensing and Biosensing. TrAC Trends Anal. Chem. 2020, 130, 11598310.1016/j.trac.2020.115983. DOI

Song X.; Wang Y.; Zhao F.; Li Q.; Ta H. Q.; Rümmeli M. H.; Tully C. G.; Li Z.; Yin W.-J.; Yang L.; Lee K.-B.; Yang J.; Bozkurt I.; Liu S.; Zhang W.; Chhowalla M. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials. ACS Nano 2019, 13 (7), 8312–8319. 10.1021/acsnano.9b03761. PubMed DOI

Guselnikova O.; Lim H.; Kim H.-J.; Kim S. H.; Gorbunova A.; Eguchi M.; Postnikov P.; Nakanishi T.; Asahi T.; Na J.; Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18 (25), 210718210.1002/smll.202107182. PubMed DOI

Sofer Z.; Sedmidubský D.; Luxa J.; Bouša D.; Huber Š.; Lazar P.; Veselý M.; Pumera M. Universal Method for Large-Scale Synthesis of Layered Transition Metal Dichalcogenides. Chem.—Eur. J. 2017, 23 (42), 10177–10186. 10.1002/chem.201701628. PubMed DOI

Tang L.; Tan J.; Nong H.; Liu B.; Cheng H.-M. Chemical Vapor Deposition Growth of Two-Dimensional Compound Materials: Controllability, Material Quality, and Growth Mechanism. Acc. Mater. Res. 2021, 2 (1), 36–47. 10.1021/accountsmr.0c00063. DOI

Sun L.; Yuan G.; Gao L.; Yang J.; Chhowalla M.; Gharahcheshmeh M. H.; Gleason K. K.; Choi Y. S.; Hong B. H.; Liu Z. Chemical Vapour Deposition. Nat. Rev. Methods Primers 2021, 1 (1), 5.10.1038/s43586-020-00005-y. DOI

Han J. H.; Kwak M.; Kim Y.; Cheon J. Recent Advances in the Solution-Based Preparation of Two-Dimensional Layered Transition Metal Chalcogenide Nanostructures. Chem. Rev. 2018, 118 (13), 6151–6188. 10.1021/acs.chemrev.8b00264. PubMed DOI

Buravets V.; Hosek F.; Lapcak L.; Miliutina E.; Sajdl P.; Elashnikov R.; Švorčík V.; Lyutakov O. Beyond the Platinum Era—Scalable Preparation and Electrochemical Activation of TaS2 Flakes. ACS Appl. Mater. Interfaces 2023, 15 (4), 5679–5686. 10.1021/acsami.2c20261. PubMed DOI PMC

Waqas M.; Younis J.; Awais M.; Nazar N.; Hussain S.; Murtaza S.; Yasmin N.; Ashiq M. N.; Mirza M.; Safdar M. CrS2-Modulated Enhanced Catalytic Properties of CdS/MoS2 Heterostructures Toward Photodegradation and Electrochemical OER Kinetics. Energy Fuels 2022, 36 (15), 8391–8401. 10.1021/acs.energyfuels.2c01821. DOI

Nabi G.; Riaz K. N.; Nazir M.; Raza W.; Tahir M. B.; Rafique M.; Malik N.; Siddiqa A.; Ali Gillani S. S.; Rizwan M.; Shakil M.; Tanveer M. Cogent Synergic Effect of TiS2/g-C3N4 Composite with Enhanced Electrochemical Performance for Supercapacitor. Ceramics Internat. 2020, 46 (17), 27601–27607. 10.1016/j.ceramint.2020.07.254. DOI

Nabi G.; Ali W.; Tanveer M.; Iqbal T.; Rizwan M.; Hussain S. Robust Synergistic Effect of TiS2/MoS2 Hierarchal Micro-Flowers Composite Realizing Enhanced Electrochemical Performance. J. Energy Storage 2023, 58, 10631610.1016/j.est.2022.106316. DOI

Li T.; Guo W.; Ma L.; Li W.; Yu Z.; Han Z.; Gao S.; Liu L.; Fan D.; Wang Z.; Yang Y.; Lin W.; Luo Z.; Chen X.; Dai N.; Tu X.; Pan D.; Yao Y.; Wang P.; Nie Y.; Wang J.; Shi Y.; Wang X. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire. Nat. Nanotechnol. 2021, 16 (11), 1201–1207. 10.1038/s41565-021-00963-8. PubMed DOI

Zhou J.; Lin J.; Huang X.; Zhou Y.; Chen Y.; Xia J.; Wang H.; Xie Y.; Yu H.; Lei J.; Wu D.; Liu F.; Fu Q.; Zeng Q.; Hsu C.-H.; Yang C.; Lu L.; Yu T.; Shen Z.; Lin H.; Yakobson B. I.; Liu Q.; Suenaga K.; Liu G.; Liu Z. A Library of Atomically Thin Metal Chalcogenides. Nature 2018, 556 (7701), 355–359. 10.1038/s41586-018-0008-3. PubMed DOI

Wang H.; Lv W.; Shi J.; Wang H.; Wang D.; Jin L.; Chao J.; van Aken P. A.; Chen R.; Huang W. Efficient Liquid Nitrogen Exfoliation of MoS2 Ultrathin Nanosheets in the Pure 2H Phase. ACS Sustainable Chem. Eng. 2020, 8 (1), 84–90. 10.1021/acssuschemeng.9b04057. DOI

Kertesz M.; Hoffmann R. Octahedral vs. trigonal-prismatic coordination and clustering in transition-metal dichalcogenides. J. Am. Chem. Soc. 1984, 106 (12), 3453–3460. 10.1021/ja00324a012. DOI

Rasmussen F. A.; Thygesen K. S. Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides. J. Phys. Chem. C 2015, 119 (23), 13169–13183. 10.1021/acs.jpcc.5b02950. DOI

Yu Q.; Zhang Z.; Qiu S.; Luo Y.; Liu Z.; Yang F.; Liu H.; Ge S.; Zou X.; Ding B.; Ren W.; Cheng H.-M.; Sun C.; Liu B. A Ta-TaS2 Monolith Catalyst with Robust and Metallic Interface for Superior Hydrogen Evolution. Nat. Commun. 2021, 12 (1), 6051.10.1038/s41467-021-26315-7. PubMed DOI PMC

Teng C.; Yu Q.; Sun Y.; Ding B.; Chen W.; Zhang Z.; Liu B.; Cheng H.-M. Homologous Gradient Heterostructure-Based Artificial Synapses for Neuromorphic Computation. InfoMat 2023, 5 (1), e1235110.1002/inf2.12351. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...