• This record comes from PubMed

Beyond the Platinum Era─Scalable Preparation and Electrochemical Activation of TaS2 Flakes

. 2023 Feb 01 ; 15 (4) : 5679-5686. [epub] 20230120

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Among 2D materials, transition-metal dichalcogenides (TMDCs) of group 5 metals recently have attracted substantial interest due to their superior electrocatalytic activity toward hydrogen evolution reaction (HER). However, a straightforward and efficient synthesis of the TMDCs which can be easily scaled up is missing. Herein, we report an innovative, simple, and scalable method for tantalum disulfide (TaS2) synthesis, involving CS2 as a sulfurizing agent and Ta2O5 as a metal precursor. The structure of the created TaS2 flakes was analyzed by Raman, XRD, XPS, SEM, and HRTEM techniques. It was demonstrated that a tuning between 1T (metallic) and 3R (semiconductor) TaS2 phases can be accomplished by varying the reaction conditions. The created materials were tested for HER, and the electrocatalytic activity of both phases was significantly enhanced by electrochemical self-activation, up to that comparable with the Pt one. The final values of the Tafel slopes of activated TaS2 were found to be 35 and 43 mV/dec for 3R-TaS2 and 1T-TaS2, respectively, with the corresponding overpotentials of 63 and 109 mV required to reach a current density of 10 mA/cm2. We also investigated the mechanism of flake activation, which can be attributed to the changes in the flake morphology and surface chemistry. Our work provides a scalable and simple synthesis method to produce transition-metal sulfides which could replace the platinum catalyst in water splitting technology.

See more in PubMed

Perez M.; Perez R. Update 2022 – A Fundamental Look at Supply Side Energy Reserves for the Planet. Solar Energy Advances 2022, 2, 10001410.1016/j.seja.2022.100014. DOI

Javed A. R.; Shahzad F.; ur Rehman S.; Zikria Y. B.; Razzak I.; Jalil Z.; Xu G. Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 10379410.1016/j.cities.2022.103794. DOI

Why did renewables become so cheap so fast?. Our World in Data. https://ourworldindata.org/cheap-renewables-growth (accessed May 26, 2022).

Hansen J. N.; Prats H.; Toudahl K. K.; Mørch Secher N.; Chan K.; Kibsgaard J.; Chorkendorff I. Is There Anything Better than Pt for HER?. ACS Energy Lett. 2021, 6, 1175–1180. 10.1021/acsenergylett.1c00246. PubMed DOI PMC

Greeley J.; Jaramillo T. F.; Bonde J.; Chorkendorff I.; Nørskov J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. 10.1038/nmat1752. PubMed DOI

Vesborg P. C. K.; Seger B.; Chorkendorff I. Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. J. Phys. Chem. Lett. 2015, 6, 951–957. 10.1021/acs.jpclett.5b00306. PubMed DOI

Zabelin D.; Zabelina A.; Miliutina E.; Trelin A.; Elashnikov R.; Nazarov D.; Maximov M.; Kalachyova Y.; Sajdl P.; Lancok J.; Vondracek M.; Svorcik V.; Lyutakov O. Design of Hybrid Au Grating/TiO2 Structure for NIR Enhanced Photo-Electrochemical Water Splitting. Chem. Eng. J. 2022, 443, 13644010.1016/j.cej.2022.136440. DOI

Zabelin D.; Zabelina A.; Tulupova A.; Elashnikov R.; Kolska Z.; Svorcik V.; Lyutakov O. A Surface Plasmon Polariton-Triggered Z-Scheme for Overall Water Splitting and Solely Light-Induced Hydrogen Generation. J. Mater. Chem. A 2022, 10, 13829–13838. 10.1039/D2TA02365B. DOI

Zabelina A.; Zabelin D.; Miliutina E.; Lancok J.; Svorcik V.; Chertopalov S.; Lyutakov O. Surface Plasmon-Polariton Triggering of Ti3C2Tx MXene Catalytic Activity for Hydrogen Evolution Reaction Enhancement. J. Mater. Chem. A 2021, 9, 17770–17779. 10.1039/D1TA04505A. DOI

Guselnikova O.; Trelin A.; Miliutina E.; Elashnikov R.; Sajdl P.; Postnikov P.; Kolska Z.; Svorcik V.; Lyutakov O. Plasmon-Induced Water Splitting—through Flexible Hybrid 2D Architecture up to Hydrogen from Seawater under NIR Light. ACS Appl. Mater. Interfaces 2020, 12, 28110–28119. 10.1021/acsami.0c04029. PubMed DOI

Tsai C.; Chan K.; Nørskov J. K.; Abild-Pedersen F. Theoretical Insights into the Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surf. Sci. 2015, 640, 133–140. 10.1016/j.susc.2015.01.019. DOI

Liu Y.; Wu J.; Hackenberg K. P.; Zhang J.; Wang Y. M.; Yang Y.; Keyshar K.; Gu J.; Ogitsu T.; Vajtai R.; Lou J.; Ajayan P. M.; Wood B. C.; Yakobson B. I. Self-Optimizing, Highly Surface-Active Layered Metal Dichalcogenide Catalysts for Hydrogen Evolution. Nat. Energy 2017, 2, 17127.10.1038/nenergy.2017.127. DOI

Lin L.; Sherrell P.; Liu Y.; Lei W.; Zhang S.; Zhang H.; Wallace G. G.; Chen J. Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Adv. Energy Mater. 2020, 10, 190387010.1002/aenm.201903870. DOI

Fu Q.; Han J.; Wang X.; Xu P.; Yao T.; Zhong J.; Zhong W.; Liu S.; Gao T.; Zhang Z.; Xu L.; Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021, 33, 190781810.1002/adma.201907818. PubMed DOI PMC

Wu X.; Zhang H.; Zhang J.; Lou X. W. Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. Adv. Mater. 2021, 33, 200837610.1002/adma.202008376. PubMed DOI

Chen H.; Si J.; Lyu S.; Zhang T.; Li Z.; Lei C.; Lei L.; Yuan C.; Yang B.; Gao L.; Hou Y. Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 24675.10.1021/acsami.9b15039. PubMed DOI

Chhowalla M.; Shin H. S.; Eda G.; Li L. J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 13.10.1038/NCHEM.1589. PubMed DOI

Voiry D.; Mohite A.; Chhowalla M. Phase Engineering of Transition Metal Dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. 10.1039/C5CS00151J. PubMed DOI

Monga D.; Sharma S.; Shetti N. P.; Basu S.; Reddy K. R.; Aminabhavi T. M. Advances in Transition Metal Dichalcogenide-Based Two-Dimensional Nanomaterials. Mater. Today Chem. 2021, 19, 10039910.1016/j.mtchem.2020.100399. DOI

Obolonchik V. A.; Radzikovskaya S. V.; Bukhanevich V. F. A Study of Niobium and Tantalum Sulfides. Powder Metall. Met. Ceram. 1965, 4, 877–881. 10.1007/BF00773689. DOI

Kaneko T.; Yashima Y.; Ahmadi E.; Natsui S.; Suzuki R. O. Synthesis of Sc Sulfides by CS2 Sulfurization. J. Solid State Chem. 2020, 285, 12126810.1016/j.jssc.2020.121268. DOI

Yuan H.; Zhang J.; Yu R.; Su Q. Synthesis of Rare Earth Sulfides and Their UV-Vis Absorption Spectra. J. Rare Earths 2009, 27, 308–311. 10.1016/S1002-0721(08)60239-2. DOI

Suzuki R. O.; Yashima Y.; Suzuki N.; Ahmadi E.; Natsui S.; Kikuchi T. Titanium production via titanium sulfide. MATEC Web Conf. 2020, 321, 0700310.1051/matecconf/202032107003. DOI

Yu Q.; Zhang Z.; Qiu S.; Luo Y.; Liu Z.; Yang F.; Liu H.; Ge S.; Zou X.; Ding B.; Ren W.; Cheng H.-M.; Sun C.; Liu B. A Ta-TaS2 Monolith Catalyst with Robust and Metallic Interface for Superior Hydrogen Evolution. Nat. Commun. 2021, 12, 6051.10.1038/s41467-021-26315-7. PubMed DOI PMC

Feng Y.; Gong S.; Du E.; Chen X.; Qi R.; Yu K.; Zhu Z. 3R TaS2 Surpasses the Corresponding 1T and 2H Phases for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2018, 122, 2382–2390. 10.1021/acs.jpcc.7b10833. DOI

Huan Y.; Shi J.; Zou X.; Gong Y.; Zhang Z.; Li M.; Zhao L.; Xu R.; Jiang S.; Zhou X.; Hong M.; Xie C.; Li H.; Lang X.; Zhang Q.; Gu L.; Yan X.; Zhang Y. Vertical 1T-TaS2 Synthesis on Nanoporous Gold for High-Performance Electrocatalytic Applications. Adv. Mater. 2018, 30, 170591610.1002/adma.201705916. PubMed DOI

Kovalska E.; Roy P. K.; Antonatos N.; Mazanek V.; Vesely M.; Wu B.; Sofer Z. Photocatalytic Activity of Twist-Angle Stacked 2D TaS2. npj 2D Mater. Appl. 2021, 5, 68.10.1038/s41699-021-00247-8. DOI

Yu Q.; Luo Y.; Qiu S.; Li Q.; Cai Z.; Zhang Z.; Liu J.; Sun C.; Liu B. Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial Engineering. ACS Nano 2019, 13, 11874–11881. 10.1021/acsnano.9b05933. PubMed DOI

Zhang M.; He Y.; Yan D.; Xu H.; Wang A.; Chen Z.; Wang S.; Luo H.; Yan K. Multifunctional 2H-TaS2 Nanoflakes for Efficient Supercapacitors and Electrocatalytic Evolution of Hydrogen and Oxygen. Nanoscale 2019, 11, 22255–22260. 10.1039/C9NR07564J. PubMed DOI

Pan J.; Guo C.; Song C.; Lai X.; Li H.; Zhao W.; Zhang H.; Mu G.; Bu K.; Lin T.; Xie X.; Chen M.; Huang F. Enhanced Superconductivity in Restacked TaS2 Nanosheets. J. Am. Chem. Soc. 2017, 139, 4623–4626. 10.1021/jacs.7b00216. PubMed DOI

Najafi L.; Bellani S.; Oropesa-Nuñez R.; Brescia R.; Prato M.; Pasquale L.; Demirci C.; Drago F.; Martín-García B.; Luxa J.; Manna L.; Sofer Z.; Bonaccorso F. Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction. Small 2020, 16, 200337210.1002/smll.202003372. PubMed DOI

Beydaghi H.; Najafi L.; Bellani S.; Bagheri A.; Martín-García B.; Salarizadeh P.; Hooshyari K.; Naderizadeh S.; Serri M.; Pasquale L.; Wu B.; Oropesa-Nuñez R.; Sofer Z.; Pellegrini V.; Bonaccorso F. Functionalized Metallic Transition Metal Dichalcogenide (TaS 2 ) for Nanocomposite Membranes in Direct Methanol Fuel Cells. J. Mater. Chem. A 2021, 9, 6368–6381. 10.1039/D0TA11137F. DOI

Hirata T.; Ohuchi F. S. Temperature Dependence of the Raman Spectra of 1T-TaS2. Solid State Commun. 2001, 117, 361–364. 10.1016/S0038-1098(00)00468-3. DOI

Liu G.; Zhang E. X.; Liang C. D.; Bloodgood M. A.; Salguero T. T.; Fleetwood D. M.; Balandin A. A. Total-Ionizing-Dose Effects on Threshold Switching in 1T-TaS2 Charge Density Wave Devices. IEEE Electron Device Lett. 2017, 38, 1724–1727. 10.1109/LED.2017.2763597. DOI

Albertini O. R.; Zhao R.; McCann R. L.; Feng S.; Terrones M.; Freericks J. K.; Robinson J. A.; Liu A. Y. Zone-Center Phonons of Bulk, Few-Layer, and Monolayer 1 T – TaS2: Detection of Commensurate Charge Density Wave Phase through Raman Scattering. Phys. Rev. B 2016, 93, 21410910.1103/PhysRevB.93.214109. DOI

Saito R.; Tatsumi Y.; Huang S.; Ling X.; Dresselhaus M. S. Raman Spectroscopy of Transition Metal Dichalcogenides. J. Phys.: Condens. Matter 2016, 28, 35300210.1088/0953-8984/28/35/353002. PubMed DOI

Tang L.; Tan J.; Nong H.; Liu B.; Cheng H. M. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2021, 2, 36.10.1021/accountsmr.0c00063. DOI

Li H.; Li Y.; Aljarb A.; Shi Y.; Li L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134.10.1021/acs.chemrev.7b00212. PubMed DOI

Hu Y.; Hao Q.; Zhu B.; Li B.; Gao Z.; Wang Y.; Tang K. Toward Exploring the Structure of Monolayer to Few-Layer TaS2 by Efficient Ultrasound-Free Exfoliation. Nanoscale Res. Lett. 2018, 13, 20.10.1186/s11671-018-2439-z. PubMed DOI PMC

Liu Y.; Xiao C.; Li Z.; Xie Y. Vacancy Engineering for Tuning Electron and Phonon Structures of Two-Dimensional Materials. Adv. Energy Mater. 2016, 6, 160043610.1002/aenm.201600436. DOI

Li H.; Tsai C.; Koh A. L.; Cai L.; Contryman A. W.; Fragapane A. H.; Zhao J.; Han H. S.; Manoharan H. C.; Abild-Pedersen F.; Nørskov J. K.; Zheng X. Erratum: Corrigendum: Activating and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nat. Mater. 2016, 15, 364–364. 10.1038/nmat4564. PubMed DOI

Tsai C.; Li H.; Park S.; Park J.; Han H. S.; Nørskov J. K.; Zheng X.; Abild-Pedersen F. Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nat. Commun. 2017, 8, 15113.10.1038/ncomms15113. PubMed DOI PMC

Li B.; Jiang L.; Li X.; Ran P.; Zuo P.; Wang A.; Qu L.; Zhao Y.; Cheng Z.; Lu Y. Preparation of Monolayer MoS2 Quantum Dots Using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Sci. Rep. 2017, 7, 11182.10.1038/s41598-017-10632-3. PubMed DOI PMC

Li Q.; Guo Y.; Tian Y.; Liu W.; Chu K. Activating VS2 Basal Planes for Enhanced NRR Electrocatalysis: The Synergistic Role of S-Vacancies and B Dopants. J. Mater. Chem. A 2020, 8, 16195–16202. 10.1039/D0TA05282E. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...