Beyond the Platinum Era─Scalable Preparation and Electrochemical Activation of TaS2 Flakes
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
36668671
PubMed Central
PMC10016745
DOI
10.1021/acsami.2c20261
Knihovny.cz E-resources
- Keywords
- CS2, TaS2, electrochemical activation, flakes, hydrogen evolution reaction, sulfurization, transition-metal dichalcogenides,
- Publication type
- Journal Article MeSH
Among 2D materials, transition-metal dichalcogenides (TMDCs) of group 5 metals recently have attracted substantial interest due to their superior electrocatalytic activity toward hydrogen evolution reaction (HER). However, a straightforward and efficient synthesis of the TMDCs which can be easily scaled up is missing. Herein, we report an innovative, simple, and scalable method for tantalum disulfide (TaS2) synthesis, involving CS2 as a sulfurizing agent and Ta2O5 as a metal precursor. The structure of the created TaS2 flakes was analyzed by Raman, XRD, XPS, SEM, and HRTEM techniques. It was demonstrated that a tuning between 1T (metallic) and 3R (semiconductor) TaS2 phases can be accomplished by varying the reaction conditions. The created materials were tested for HER, and the electrocatalytic activity of both phases was significantly enhanced by electrochemical self-activation, up to that comparable with the Pt one. The final values of the Tafel slopes of activated TaS2 were found to be 35 and 43 mV/dec for 3R-TaS2 and 1T-TaS2, respectively, with the corresponding overpotentials of 63 and 109 mV required to reach a current density of 10 mA/cm2. We also investigated the mechanism of flake activation, which can be attributed to the changes in the flake morphology and surface chemistry. Our work provides a scalable and simple synthesis method to produce transition-metal sulfides which could replace the platinum catalyst in water splitting technology.
Central Laboratories University of Chemistry and Technology 166 28 Prague Czech Republic
Department of Power Engineering University of Chemistry and Technology Prague 166 28 Czech Republic
See more in PubMed
Perez M.; Perez R. Update 2022 – A Fundamental Look at Supply Side Energy Reserves for the Planet. Solar Energy Advances 2022, 2, 10001410.1016/j.seja.2022.100014. DOI
Javed A. R.; Shahzad F.; ur Rehman S.; Zikria Y. B.; Razzak I.; Jalil Z.; Xu G. Future smart cities requirements, emerging technologies, applications, challenges, and future aspects. Cities 2022, 129, 10379410.1016/j.cities.2022.103794. DOI
Why did renewables become so cheap so fast?. Our World in Data. https://ourworldindata.org/cheap-renewables-growth (accessed May 26, 2022).
Hansen J. N.; Prats H.; Toudahl K. K.; Mørch Secher N.; Chan K.; Kibsgaard J.; Chorkendorff I. Is There Anything Better than Pt for HER?. ACS Energy Lett. 2021, 6, 1175–1180. 10.1021/acsenergylett.1c00246. PubMed DOI PMC
Greeley J.; Jaramillo T. F.; Bonde J.; Chorkendorff I.; Nørskov J. K. Computational High-Throughput Screening of Electrocatalytic Materials for Hydrogen Evolution. Nat. Mater. 2006, 5, 909–913. 10.1038/nmat1752. PubMed DOI
Vesborg P. C. K.; Seger B.; Chorkendorff I. Recent Development in Hydrogen Evolution Reaction Catalysts and Their Practical Implementation. J. Phys. Chem. Lett. 2015, 6, 951–957. 10.1021/acs.jpclett.5b00306. PubMed DOI
Zabelin D.; Zabelina A.; Miliutina E.; Trelin A.; Elashnikov R.; Nazarov D.; Maximov M.; Kalachyova Y.; Sajdl P.; Lancok J.; Vondracek M.; Svorcik V.; Lyutakov O. Design of Hybrid Au Grating/TiO2 Structure for NIR Enhanced Photo-Electrochemical Water Splitting. Chem. Eng. J. 2022, 443, 13644010.1016/j.cej.2022.136440. DOI
Zabelin D.; Zabelina A.; Tulupova A.; Elashnikov R.; Kolska Z.; Svorcik V.; Lyutakov O. A Surface Plasmon Polariton-Triggered Z-Scheme for Overall Water Splitting and Solely Light-Induced Hydrogen Generation. J. Mater. Chem. A 2022, 10, 13829–13838. 10.1039/D2TA02365B. DOI
Zabelina A.; Zabelin D.; Miliutina E.; Lancok J.; Svorcik V.; Chertopalov S.; Lyutakov O. Surface Plasmon-Polariton Triggering of Ti3C2Tx MXene Catalytic Activity for Hydrogen Evolution Reaction Enhancement. J. Mater. Chem. A 2021, 9, 17770–17779. 10.1039/D1TA04505A. DOI
Guselnikova O.; Trelin A.; Miliutina E.; Elashnikov R.; Sajdl P.; Postnikov P.; Kolska Z.; Svorcik V.; Lyutakov O. Plasmon-Induced Water Splitting—through Flexible Hybrid 2D Architecture up to Hydrogen from Seawater under NIR Light. ACS Appl. Mater. Interfaces 2020, 12, 28110–28119. 10.1021/acsami.0c04029. PubMed DOI
Tsai C.; Chan K.; Nørskov J. K.; Abild-Pedersen F. Theoretical Insights into the Hydrogen Evolution Activity of Layered Transition Metal Dichalcogenides. Surf. Sci. 2015, 640, 133–140. 10.1016/j.susc.2015.01.019. DOI
Liu Y.; Wu J.; Hackenberg K. P.; Zhang J.; Wang Y. M.; Yang Y.; Keyshar K.; Gu J.; Ogitsu T.; Vajtai R.; Lou J.; Ajayan P. M.; Wood B. C.; Yakobson B. I. Self-Optimizing, Highly Surface-Active Layered Metal Dichalcogenide Catalysts for Hydrogen Evolution. Nat. Energy 2017, 2, 17127.10.1038/nenergy.2017.127. DOI
Lin L.; Sherrell P.; Liu Y.; Lei W.; Zhang S.; Zhang H.; Wallace G. G.; Chen J. Engineered 2D Transition Metal Dichalcogenides—A Vision of Viable Hydrogen Evolution Reaction Catalysis. Adv. Energy Mater. 2020, 10, 190387010.1002/aenm.201903870. DOI
Fu Q.; Han J.; Wang X.; Xu P.; Yao T.; Zhong J.; Zhong W.; Liu S.; Gao T.; Zhang Z.; Xu L.; Song B. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis. Adv. Mater. 2021, 33, 190781810.1002/adma.201907818. PubMed DOI PMC
Wu X.; Zhang H.; Zhang J.; Lou X. W. Recent Advances on Transition Metal Dichalcogenides for Electrochemical Energy Conversion. Adv. Mater. 2021, 33, 200837610.1002/adma.202008376. PubMed DOI
Chen H.; Si J.; Lyu S.; Zhang T.; Li Z.; Lei C.; Lei L.; Yuan C.; Yang B.; Gao L.; Hou Y. Highly Effective Electrochemical Exfoliation of Ultrathin Tantalum Disulfide Nanosheets for Energy-Efficient Hydrogen Evolution Electrocatalysis. ACS Appl. Mater. Interfaces 2020, 12, 24675.10.1021/acsami.9b15039. PubMed DOI
Chhowalla M.; Shin H. S.; Eda G.; Li L. J.; Loh K. P.; Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets. Nat. Chem. 2013, 5, 13.10.1038/NCHEM.1589. PubMed DOI
Voiry D.; Mohite A.; Chhowalla M. Phase Engineering of Transition Metal Dichalcogenides. Chem. Soc. Rev. 2015, 44, 2702–2712. 10.1039/C5CS00151J. PubMed DOI
Monga D.; Sharma S.; Shetti N. P.; Basu S.; Reddy K. R.; Aminabhavi T. M. Advances in Transition Metal Dichalcogenide-Based Two-Dimensional Nanomaterials. Mater. Today Chem. 2021, 19, 10039910.1016/j.mtchem.2020.100399. DOI
Obolonchik V. A.; Radzikovskaya S. V.; Bukhanevich V. F. A Study of Niobium and Tantalum Sulfides. Powder Metall. Met. Ceram. 1965, 4, 877–881. 10.1007/BF00773689. DOI
Kaneko T.; Yashima Y.; Ahmadi E.; Natsui S.; Suzuki R. O. Synthesis of Sc Sulfides by CS2 Sulfurization. J. Solid State Chem. 2020, 285, 12126810.1016/j.jssc.2020.121268. DOI
Yuan H.; Zhang J.; Yu R.; Su Q. Synthesis of Rare Earth Sulfides and Their UV-Vis Absorption Spectra. J. Rare Earths 2009, 27, 308–311. 10.1016/S1002-0721(08)60239-2. DOI
Suzuki R. O.; Yashima Y.; Suzuki N.; Ahmadi E.; Natsui S.; Kikuchi T. Titanium production via titanium sulfide. MATEC Web Conf. 2020, 321, 0700310.1051/matecconf/202032107003. DOI
Yu Q.; Zhang Z.; Qiu S.; Luo Y.; Liu Z.; Yang F.; Liu H.; Ge S.; Zou X.; Ding B.; Ren W.; Cheng H.-M.; Sun C.; Liu B. A Ta-TaS2 Monolith Catalyst with Robust and Metallic Interface for Superior Hydrogen Evolution. Nat. Commun. 2021, 12, 6051.10.1038/s41467-021-26315-7. PubMed DOI PMC
Feng Y.; Gong S.; Du E.; Chen X.; Qi R.; Yu K.; Zhu Z. 3R TaS2 Surpasses the Corresponding 1T and 2H Phases for the Hydrogen Evolution Reaction. J. Phys. Chem. C 2018, 122, 2382–2390. 10.1021/acs.jpcc.7b10833. DOI
Huan Y.; Shi J.; Zou X.; Gong Y.; Zhang Z.; Li M.; Zhao L.; Xu R.; Jiang S.; Zhou X.; Hong M.; Xie C.; Li H.; Lang X.; Zhang Q.; Gu L.; Yan X.; Zhang Y. Vertical 1T-TaS2 Synthesis on Nanoporous Gold for High-Performance Electrocatalytic Applications. Adv. Mater. 2018, 30, 170591610.1002/adma.201705916. PubMed DOI
Kovalska E.; Roy P. K.; Antonatos N.; Mazanek V.; Vesely M.; Wu B.; Sofer Z. Photocatalytic Activity of Twist-Angle Stacked 2D TaS2. npj 2D Mater. Appl. 2021, 5, 68.10.1038/s41699-021-00247-8. DOI
Yu Q.; Luo Y.; Qiu S.; Li Q.; Cai Z.; Zhang Z.; Liu J.; Sun C.; Liu B. Tuning the Hydrogen Evolution Performance of Metallic 2D Tantalum Disulfide by Interfacial Engineering. ACS Nano 2019, 13, 11874–11881. 10.1021/acsnano.9b05933. PubMed DOI
Zhang M.; He Y.; Yan D.; Xu H.; Wang A.; Chen Z.; Wang S.; Luo H.; Yan K. Multifunctional 2H-TaS2 Nanoflakes for Efficient Supercapacitors and Electrocatalytic Evolution of Hydrogen and Oxygen. Nanoscale 2019, 11, 22255–22260. 10.1039/C9NR07564J. PubMed DOI
Pan J.; Guo C.; Song C.; Lai X.; Li H.; Zhao W.; Zhang H.; Mu G.; Bu K.; Lin T.; Xie X.; Chen M.; Huang F. Enhanced Superconductivity in Restacked TaS2 Nanosheets. J. Am. Chem. Soc. 2017, 139, 4623–4626. 10.1021/jacs.7b00216. PubMed DOI
Najafi L.; Bellani S.; Oropesa-Nuñez R.; Brescia R.; Prato M.; Pasquale L.; Demirci C.; Drago F.; Martín-García B.; Luxa J.; Manna L.; Sofer Z.; Bonaccorso F. Microwave-Induced Structural Engineering and Pt Trapping in 6R-TaS2 for the Hydrogen Evolution Reaction. Small 2020, 16, 200337210.1002/smll.202003372. PubMed DOI
Beydaghi H.; Najafi L.; Bellani S.; Bagheri A.; Martín-García B.; Salarizadeh P.; Hooshyari K.; Naderizadeh S.; Serri M.; Pasquale L.; Wu B.; Oropesa-Nuñez R.; Sofer Z.; Pellegrini V.; Bonaccorso F. Functionalized Metallic Transition Metal Dichalcogenide (TaS 2 ) for Nanocomposite Membranes in Direct Methanol Fuel Cells. J. Mater. Chem. A 2021, 9, 6368–6381. 10.1039/D0TA11137F. DOI
Hirata T.; Ohuchi F. S. Temperature Dependence of the Raman Spectra of 1T-TaS2. Solid State Commun. 2001, 117, 361–364. 10.1016/S0038-1098(00)00468-3. DOI
Liu G.; Zhang E. X.; Liang C. D.; Bloodgood M. A.; Salguero T. T.; Fleetwood D. M.; Balandin A. A. Total-Ionizing-Dose Effects on Threshold Switching in 1T-TaS2 Charge Density Wave Devices. IEEE Electron Device Lett. 2017, 38, 1724–1727. 10.1109/LED.2017.2763597. DOI
Albertini O. R.; Zhao R.; McCann R. L.; Feng S.; Terrones M.; Freericks J. K.; Robinson J. A.; Liu A. Y. Zone-Center Phonons of Bulk, Few-Layer, and Monolayer 1 T – TaS2: Detection of Commensurate Charge Density Wave Phase through Raman Scattering. Phys. Rev. B 2016, 93, 21410910.1103/PhysRevB.93.214109. DOI
Saito R.; Tatsumi Y.; Huang S.; Ling X.; Dresselhaus M. S. Raman Spectroscopy of Transition Metal Dichalcogenides. J. Phys.: Condens. Matter 2016, 28, 35300210.1088/0953-8984/28/35/353002. PubMed DOI
Tang L.; Tan J.; Nong H.; Liu B.; Cheng H. M. Chemical vapor deposition growth of two-dimensional compound materials: controllability, material quality, and growth mechanism. Acc. Mater. Res. 2021, 2, 36.10.1021/accountsmr.0c00063. DOI
Li H.; Li Y.; Aljarb A.; Shi Y.; Li L. J. Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 2018, 118, 6134.10.1021/acs.chemrev.7b00212. PubMed DOI
Hu Y.; Hao Q.; Zhu B.; Li B.; Gao Z.; Wang Y.; Tang K. Toward Exploring the Structure of Monolayer to Few-Layer TaS2 by Efficient Ultrasound-Free Exfoliation. Nanoscale Res. Lett. 2018, 13, 20.10.1186/s11671-018-2439-z. PubMed DOI PMC
Liu Y.; Xiao C.; Li Z.; Xie Y. Vacancy Engineering for Tuning Electron and Phonon Structures of Two-Dimensional Materials. Adv. Energy Mater. 2016, 6, 160043610.1002/aenm.201600436. DOI
Li H.; Tsai C.; Koh A. L.; Cai L.; Contryman A. W.; Fragapane A. H.; Zhao J.; Han H. S.; Manoharan H. C.; Abild-Pedersen F.; Nørskov J. K.; Zheng X. Erratum: Corrigendum: Activating and Optimizing MoS2 Basal Planes for Hydrogen Evolution through the Formation of Strained Sulphur Vacancies. Nat. Mater. 2016, 15, 364–364. 10.1038/nmat4564. PubMed DOI
Tsai C.; Li H.; Park S.; Park J.; Han H. S.; Nørskov J. K.; Zheng X.; Abild-Pedersen F. Electrochemical Generation of Sulfur Vacancies in the Basal Plane of MoS2 for Hydrogen Evolution. Nat. Commun. 2017, 8, 15113.10.1038/ncomms15113. PubMed DOI PMC
Li B.; Jiang L.; Li X.; Ran P.; Zuo P.; Wang A.; Qu L.; Zhao Y.; Cheng Z.; Lu Y. Preparation of Monolayer MoS2 Quantum Dots Using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS2 Targets in Water. Sci. Rep. 2017, 7, 11182.10.1038/s41598-017-10632-3. PubMed DOI PMC
Li Q.; Guo Y.; Tian Y.; Liu W.; Chu K. Activating VS2 Basal Planes for Enhanced NRR Electrocatalysis: The Synergistic Role of S-Vacancies and B Dopants. J. Mater. Chem. A 2020, 8, 16195–16202. 10.1039/D0TA05282E. DOI