• This record comes from PubMed

Plasmon assisted Ti3C2Tx grafting and surface termination tuning for enhancement of flake stability and humidity sensing performance

. 2023 Dec 05 ; 5 (24) : 6837-6846. [epub] 20230919

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Humidity sensors play a critical role in monitoring human activities, environmental health, food processing and storage, and many other fields. Recently, some 2D materials, particularly MXenes, have been considered as promising candidates for creating humidity sensors because of their high surface area, surface-to-bulk ratio, and excellent conductivity, arising from the high concentration and mobility of free electrons. In this work, we propose the plasmon-assisted surface modification and termination tuning of common MXene (Ti3C2Tx) to enhance their response to humidity and increase their stability against oxidation. Hydrophobic (-C6H4-CF3) and hydrophilic (-C6H4-COOH) chemical moieties were covalently grafted to the Ti3C2Tx surface using plasmon-mediated diazonium chemistry. In situ Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) measurements, performed at different humidity levels indicate that surface modification significantly affects penetration of water molecules in Ti3C2Tx films. As a result, the sensitivity of the flakes to the presence of water molecules was significantly altered. Additionally, proposed surface grafting commonly proceeds on the less stable MXene surface sites, where flake oxidation commonly initiates. As a result of the modification, such "weak" and more chemically active sites were blocked and Ti3C2Tx stability was significantly enhanced.

See more in PubMed

Tai H. Duan Z. Wang Y. Wang S. Jiang Y. ACS Appl. Mater. Interfaces. 2020;12:31037–31053. doi: 10.1021/acsami.0c06435. PubMed DOI

Tai H. Wang S. Duan Z. Jiang Y. Sens. Actuators, B. 2020;318:128104. doi: 10.1016/j.snb.2020.128104. DOI

Zhou X. Xue Z. Chen X. Huang C. Bai W. Lu Z. Wang T. J. Mater. Chem. B. 2020;8:3231–3248. doi: 10.1039/C9TB02518A. PubMed DOI

Peng B. Zhao F. Ping J. Ying Y. Small. 2020;16:2002681. doi: 10.1002/smll.202002681. PubMed DOI

Owji E. Mokhtari H. Ostovari F. Darazereshki B. Shakiba N. Sci. Rep. 2021;11:1771. doi: 10.1038/s41598-020-79563-w. PubMed DOI PMC

Petukhov D. I. Kan A. S. Chumakov A. P. Konovalov O. V. Valeev R. G. Eliseev A. A. J. Membr. Sci. 2021;621:118994. doi: 10.1016/j.memsci.2020.118994. DOI

Buravets V. Hosek F. Lapcak L. Miliutina E. Sajdl P. Elashnikov R. Švorčík V. Lyutakov O. ACS Appl. Mater. Interfaces. 2023;15:5679–5686. doi: 10.1021/acsami.2c20261. PubMed DOI PMC

Naguib M. Mashtalir O. Carle J. Presser V. Lu J. Hultman L. Gogotsi Y. Barsoum M. W. ACS Nano. 2012;6:1322–1331. doi: 10.1021/nn204153h. PubMed DOI

Mohammadi A. V. Rosen J. Gogotsi Y. Science. 2021;372:eabf1581. doi: 10.1126/science.abf1581. PubMed DOI

Wang C. Chen S. Song L. Adv. Funct. Mater. 2020;30:2000869. doi: 10.1002/adfm.202000869. PubMed DOI PMC

Zabelina A. Zabelin D. Miliutina E. Lancok J. Svorcik V. Chertopalov S. Lyutakov O. J. Mater. Chem. A. 2021;9:17770–17779. doi: 10.1039/D1TA04505A. DOI

Lu B. Zhu Z. Ma B. Wang W. Zhu R. Zhang J. Small. 2021;17:e2100946. doi: 10.1002/smll.202100946. PubMed DOI

Zhang C. Luo Y. Tan J. Yu Q. Yang F. Zhang Z. Yang L. Cheng H.-M. Liu B. Nat. Commun. 2020;11:3724. doi: 10.1038/s41467-020-17121-8. PubMed DOI PMC

Gogotsi Y. Huang Q. ACS Nano. 2021;15:5775–5780. doi: 10.1021/acsnano.1c03161. PubMed DOI

Riazi H. Taghizadeh G. Soroush M. ACS Omega. 2021;6:11103–11112. doi: 10.1021/acsomega.0c05828. PubMed DOI PMC

Pei Y. Zhang X. Hui Z. Zhou J. Huang X. Sun G. Huang W. ACS Nano. 2021;15:3996–4017. doi: 10.1021/acsnano.1c00248. PubMed DOI

Kim S. J. Koh H.-J. Ren C. E. Kwon O. Maleski K. Cho S.-Y. Anasori B. Kim C.-K. Choi Y.-K. Kim J. Gogotsi Y. Jung H.-T. ACS Nano. 2018;12:986–993. doi: 10.1021/acsnano.7b07460. PubMed DOI

Muckley E. S. Naguib M. Wang H.-W. Vlcek L. Osti N. C. Sacci R. L. Sang X. Unocic R. R. Xie Y. Tyagi M. Mamontov E. Page K. L. Kent P. R. C. Nanda J. Ivanov I. N. ACS Nano. 2017;11:11118–11126. doi: 10.1021/acsnano.7b05264. PubMed DOI

Ghidiu M. Halim J. Kota S. Bish D. Gogotsi Y. Barsoum M. W. Chem. Mater. 2016;28:3507–3514. doi: 10.1021/acs.chemmater.6b01275. DOI

Muckley E. S. Naguib M. Ivanov I. N. Nanoscale. 2018;10:21689–21695. doi: 10.1039/C8NR05170D. PubMed DOI

Lipatov A. Alhabeb M. Lukatskaya M. R. Boson A. Gogotsi Y. Sinitskii A. Adv. Electron. Mater. 2016;2:1600255. doi: 10.1002/aelm.201600255. DOI

Zhang C. J. Pinilla S. McEvoy N. Cullen C. P. Anasori B. Long E. Park S.-H. Seral-Ascaso A. Shmeliov A. Krishnan D. Morant C. Liu X. Duesberg G. S. Gogotsi Y. Nicolosi V. Chem. Mater. 2017;29:4848–4856. doi: 10.1021/acs.chemmater.7b00745. DOI

Salim O. Mahmoud K. A. Pant K. K. Joshi R. K. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. DOI

Persson P. O. Å. Rosen J. Curr. Opin. Solid State Mater. Sci. 2019;23:100774. doi: 10.1016/j.cossms.2019.100774. DOI

Chae Y. Kim S. J. Cho S.-Y. Choi J. Maleski K. Lee B.-J. Jung H.-T. Gogotsi Y. Lee Y. Ahn C. W. Nanoscale. 2019;11:8387–8393. doi: 10.1039/C9NR00084D. PubMed DOI

Chertopalov S. Mochalin V. N. ACS Nano. 2018;12:6109–6116. doi: 10.1021/acsnano.8b02379. PubMed DOI

Huang S. Mochalin V. N. Inorg. Chem. 2019;58:1958–1966. doi: 10.1021/acs.inorgchem.8b02890. PubMed DOI

Lotfi R. Naguib M. Yilmaz D. E. Nanda J. van Duin A. C. T. J. Mater. Chem. A. 2018;6:12733–12743. doi: 10.1039/C8TA01468J. DOI

Xia F. Lao J. Yu R. Sang X. Luo J. Li Y. Wu J. Nanoscale. 2019;11:23330–23337. doi: 10.1039/C9NR07236E. PubMed DOI

Petukhov D. I. Chumakov A. P. Kan A. S. Lebedev V. A. Eliseev A. A. Konovalov O. V. Eliseev A. A. Nanoscale. 2019;11:9980–9986. doi: 10.1039/C9NR00525K. PubMed DOI

Soomro R. A. Zhang P. Fan B. Wei Y. Xu B. Nano-Micro Lett. 2023;15:108. doi: 10.1007/s40820-023-01069-7. PubMed DOI PMC

Liu N. Li Q. Wan H. Chang L. Wang H. Fang J. Ding T. Wen Q. Zhou L. Xiao X. Nat. Commun. 2022;13:5551. doi: 10.1038/s41467-022-33280-2. PubMed DOI PMC

Riazi H. Anayee M. Hantanasirisakul K. Shamsabadi A. A. Anasori B. Gogotsi Y. Soroush M. Adv. Mater. Interfaces. 2020;7:1902008. doi: 10.1002/admi.201902008. DOI

Natu V. Hart J. L. Sokol M. Chiang H. Taheri M. L. Barsoum M. W. Angew. Chem., Int. Ed. 2019;58:12655–12660. doi: 10.1002/anie.201906138. PubMed DOI

Wang Y. Fu J. Xu J. Hu H. Ho D. ACS Appl. Mater. Interfaces. 2023;15:12232–12239. doi: 10.1021/acsami.2c22609. PubMed DOI

Bark H. Thangavel G. Liu R. J. Chua D. H. Lee P. S. Small Methods. 2023:2300077. doi: 10.1002/smtd.202300077. PubMed DOI

Swapnalin J. Koneru B. Pothu R. Banerjee P. Boddula R. Radwan A. B. Al-Qahtani R. Appl. Phys. Lett. 2023;122:161902. doi: 10.1063/5.0142053. DOI

Wu C. W. Unnikrishnan B. Chen I. W. P. Harroun S. G. Chang H. T. Huang C. C. Energy Storage Mater. 2020;25:563–571. doi: 10.1016/j.ensm.2019.09.026. DOI

Ko T. Y. Kim D. Kim S. J. Kim H. Nissimagoudar A. S. Lee S. C. Lin X. Cummings P. T. Doo S. Park S. Hassan T. Oh T. Chae A. Lee J. Gogotsi Y. In I. Koo C. M. ACS Nano. 2023;17:1112–1119. doi: 10.1021/acsnano.2c08209. PubMed DOI

Shin H. Lee H. Seo Y. Jeong W. Han T. H. Langmuir. 2023;39:2358–2367. doi: 10.1021/acs.langmuir.2c03094. PubMed DOI

Yan J. Liu P. F. Wen H. X. Liu H. J. ChemistrySelect. 2022;7:e202201733. doi: 10.1002/slct.202201733. DOI

Liu Z. H. Wang Q. M. Lü Q. F. Wu J. Colloids Surf., A. 2022;640:128396. doi: 10.1016/j.colsurfa.2022.128396. DOI

Mozafari M. Soroush M. Mater. Adv. 2021;2:7277–7307. doi: 10.1039/D1MA00625H. DOI

Lorencova L. Gajdosova V. Hroncekova S. Bertok T. Jerigova M. Velic D. Sobolciak P. Krupa I. Kasak P. Tkac J. Front. Chem. 2020;8:553. doi: 10.3389/fchem.2020.00553. PubMed DOI PMC

Popelka A. Padmanabhan A. C. Elgendy A. S. Sobolciak P. Krupa I. Yousaf A. B. Sebesta M. Tkac J. Kasak P. Mater. Today Commun. 2023;35:105529. doi: 10.1016/j.mtcomm.2023.105529. DOI

Fang Y. Wei Z. Guan Z. Shan N. Zhao Y. Liu F. Fu L. Huang Z. Humphrey M. G. Zhang C. J. Mater. Chem. C. 2023;11:7331–7344. doi: 10.1039/D3TC00868A. DOI

Bagheri S. Chilcott R. Luo S. Sinitskii A. Langmuir. 2022;38:12924–12934. doi: 10.1021/acs.langmuir.2c02058. PubMed DOI

Kumar A. N. Pal K. Mater. Adv. 2022;3:5151–5162. doi: 10.1039/D2MA00301E. DOI

Neubertova V. Guselnikova O. Yamauchi Y. Olshtrem A. Rimpelova S. Čižmár E. Orendáč M. Duchon J. Volfova L. Lancok J. Herynek V. Fitl P. Ulbrich P. Jelinek L. Schneider P. Kosek J. Postnikov P. Kolska Z. Svorcik V. Chertopalov S. Lyutakov O. Chem. Eng. J. 2022;446:136939. doi: 10.1016/j.cej.2022.136939. DOI

Olshtrem A. Chertopalov S. Guselnikova O. Valiev R. R. Cieslar M. Miliutina E. Elashnikov R. Fitl P. Postnikov P. Lancok J. Svorcik V. Lyutakov O. 2D Mater. 2021;8:045037. doi: 10.1088/2053-1583/ac27c0. DOI

Olshtrem A. Panov I. Chertopalov S. Zaruba K. Vokata B. Sajdl P. Lancok J. Storch J. Církva V. Svorcik V. Kartau M. Karimullah A. S. Vana J. Lyutakov O. Adv. Funct. Mater. 2023;33:2212786. doi: 10.1002/adfm.202212786. DOI

Chernova E. A. Petukhov D. I. Chumakov A. P. Kirianova A. V. Sadilov I. S. Kapitanova O. O. Boytsova O. V. Valeev R. G. Roth S. V. Eliseev A. A. Eliseev A. A. Carbon. 2021;183:404–414. doi: 10.1016/j.carbon.2021.07.011. DOI

Buffet A. Rothkirch A. Döhrmann R. Körstgens V. Abul Kashem M. M. Perlich J. Herzog G. Schwartzkopf M. Gehrke R. Müller-Buschbaum P. Roth S. V. J. Synchrotron Radiat. 2012;19:647–653. doi: 10.1107/S0909049512016895. PubMed DOI PMC

Sarycheva A. Gogotsi Y. Chem. Mater. 2020;32:3480–3488. doi: 10.1021/acs.chemmater.0c00359. DOI

Eliseev A. A. Poyarkov A. A. Chernova E. A. Eliseev A. A. Chumakov A. P. Konovalov O. V. Petukhov D. I. 2D Mater. 2019;6:035039. doi: 10.1088/2053-1583/ab15ec. DOI

Lei J.-C. Zhang X. Zhou Z. Front. Phys. 2015;10:276–286. doi: 10.1007/s11467-015-0493-x. DOI

Petukhov D. I. Kan A. S. Chumakov A. P. Konovalov O. V. Valeev R. G. Eliseev A. A. J. Membr. Sci. 2021;621:118994. doi: 10.1016/j.memsci.2020.118994. DOI

Wu C. Wang A. C. Ding W. Guo H. Wang Z. L. Adv. Energy Mater. 2019;9:1802906. doi: 10.1002/aenm.201802906. DOI

Dong K. Peng X. Wang Z. L. Adv. Mater. 2020;32:1902549. doi: 10.1002/adma.201902549. PubMed DOI

An H. Habib T. Shah S. Gao H. Patel A. Echols I. Zhao X. F. Radovic M. Green M. J. Lutkenhaus J. L. ACS Appl. Nano Mater. 2019;2:948–955. doi: 10.1021/acsanm.8b02265. DOI

Li N. Jiang Y. Zhou C. Xiao Y. Meng B. Wang Z. Huang D. Xing Ch. Peng Z. ACS Appl. Mater. Interfaces. 2019;11:38116–38125. doi: 10.1021/acsami.9b12168. PubMed DOI

Lee Y. Joon Kim S. Kim Y.-J. Lim Y. Chae Y. Lee B.-J. Kim Y.-T. Han H. Gogotsi Y. Won Ahn C. J. Mater. Chem. A. 2020;8:573–581. doi: 10.1039/C9TA07036B. DOI

Athavale S. Micci-Barreca S. Arole K. Kotasthane V. Blivin J. Cao H. Lutkenhaus J. L. Radovic M. Green M. J. Langmuir. 2023;39:918–928. doi: 10.1021/acs.langmuir.2c02051. PubMed DOI

Deng Z. Li L. Tang P. Jiao C. Yu Z. Z. Koo C. M. Zhang H. B. ACS Nano. 2022;16:16976–16986. doi: 10.1021/acsnano.2c07084. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...