Plasmon assisted Ti3C2Tx grafting and surface termination tuning for enhancement of flake stability and humidity sensing performance
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
38059029
PubMed Central
PMC10696961
DOI
10.1039/d3na00429e
PII: d3na00429e
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Humidity sensors play a critical role in monitoring human activities, environmental health, food processing and storage, and many other fields. Recently, some 2D materials, particularly MXenes, have been considered as promising candidates for creating humidity sensors because of their high surface area, surface-to-bulk ratio, and excellent conductivity, arising from the high concentration and mobility of free electrons. In this work, we propose the plasmon-assisted surface modification and termination tuning of common MXene (Ti3C2Tx) to enhance their response to humidity and increase their stability against oxidation. Hydrophobic (-C6H4-CF3) and hydrophilic (-C6H4-COOH) chemical moieties were covalently grafted to the Ti3C2Tx surface using plasmon-mediated diazonium chemistry. In situ Grazing-Incidence Wide-Angle X-ray Scattering (GIWAXS) measurements, performed at different humidity levels indicate that surface modification significantly affects penetration of water molecules in Ti3C2Tx films. As a result, the sensitivity of the flakes to the presence of water molecules was significantly altered. Additionally, proposed surface grafting commonly proceeds on the less stable MXene surface sites, where flake oxidation commonly initiates. As a result of the modification, such "weak" and more chemically active sites were blocked and Ti3C2Tx stability was significantly enhanced.
Deutsches Elektronen Synchrotron DESY 22607 Hamburg Notkestr 85 Germany
Institute of Physics of the Czech Academy of Sciences Na Slovance 1999 2 18200 Prague Czech Republic
See more in PubMed
Tai H. Duan Z. Wang Y. Wang S. Jiang Y. ACS Appl. Mater. Interfaces. 2020;12:31037–31053. doi: 10.1021/acsami.0c06435. PubMed DOI
Tai H. Wang S. Duan Z. Jiang Y. Sens. Actuators, B. 2020;318:128104. doi: 10.1016/j.snb.2020.128104. DOI
Zhou X. Xue Z. Chen X. Huang C. Bai W. Lu Z. Wang T. J. Mater. Chem. B. 2020;8:3231–3248. doi: 10.1039/C9TB02518A. PubMed DOI
Peng B. Zhao F. Ping J. Ying Y. Small. 2020;16:2002681. doi: 10.1002/smll.202002681. PubMed DOI
Owji E. Mokhtari H. Ostovari F. Darazereshki B. Shakiba N. Sci. Rep. 2021;11:1771. doi: 10.1038/s41598-020-79563-w. PubMed DOI PMC
Petukhov D. I. Kan A. S. Chumakov A. P. Konovalov O. V. Valeev R. G. Eliseev A. A. J. Membr. Sci. 2021;621:118994. doi: 10.1016/j.memsci.2020.118994. DOI
Buravets V. Hosek F. Lapcak L. Miliutina E. Sajdl P. Elashnikov R. Švorčík V. Lyutakov O. ACS Appl. Mater. Interfaces. 2023;15:5679–5686. doi: 10.1021/acsami.2c20261. PubMed DOI PMC
Naguib M. Mashtalir O. Carle J. Presser V. Lu J. Hultman L. Gogotsi Y. Barsoum M. W. ACS Nano. 2012;6:1322–1331. doi: 10.1021/nn204153h. PubMed DOI
Mohammadi A. V. Rosen J. Gogotsi Y. Science. 2021;372:eabf1581. doi: 10.1126/science.abf1581. PubMed DOI
Wang C. Chen S. Song L. Adv. Funct. Mater. 2020;30:2000869. doi: 10.1002/adfm.202000869. PubMed DOI PMC
Zabelina A. Zabelin D. Miliutina E. Lancok J. Svorcik V. Chertopalov S. Lyutakov O. J. Mater. Chem. A. 2021;9:17770–17779. doi: 10.1039/D1TA04505A. DOI
Lu B. Zhu Z. Ma B. Wang W. Zhu R. Zhang J. Small. 2021;17:e2100946. doi: 10.1002/smll.202100946. PubMed DOI
Zhang C. Luo Y. Tan J. Yu Q. Yang F. Zhang Z. Yang L. Cheng H.-M. Liu B. Nat. Commun. 2020;11:3724. doi: 10.1038/s41467-020-17121-8. PubMed DOI PMC
Gogotsi Y. Huang Q. ACS Nano. 2021;15:5775–5780. doi: 10.1021/acsnano.1c03161. PubMed DOI
Riazi H. Taghizadeh G. Soroush M. ACS Omega. 2021;6:11103–11112. doi: 10.1021/acsomega.0c05828. PubMed DOI PMC
Pei Y. Zhang X. Hui Z. Zhou J. Huang X. Sun G. Huang W. ACS Nano. 2021;15:3996–4017. doi: 10.1021/acsnano.1c00248. PubMed DOI
Kim S. J. Koh H.-J. Ren C. E. Kwon O. Maleski K. Cho S.-Y. Anasori B. Kim C.-K. Choi Y.-K. Kim J. Gogotsi Y. Jung H.-T. ACS Nano. 2018;12:986–993. doi: 10.1021/acsnano.7b07460. PubMed DOI
Muckley E. S. Naguib M. Wang H.-W. Vlcek L. Osti N. C. Sacci R. L. Sang X. Unocic R. R. Xie Y. Tyagi M. Mamontov E. Page K. L. Kent P. R. C. Nanda J. Ivanov I. N. ACS Nano. 2017;11:11118–11126. doi: 10.1021/acsnano.7b05264. PubMed DOI
Ghidiu M. Halim J. Kota S. Bish D. Gogotsi Y. Barsoum M. W. Chem. Mater. 2016;28:3507–3514. doi: 10.1021/acs.chemmater.6b01275. DOI
Muckley E. S. Naguib M. Ivanov I. N. Nanoscale. 2018;10:21689–21695. doi: 10.1039/C8NR05170D. PubMed DOI
Lipatov A. Alhabeb M. Lukatskaya M. R. Boson A. Gogotsi Y. Sinitskii A. Adv. Electron. Mater. 2016;2:1600255. doi: 10.1002/aelm.201600255. DOI
Zhang C. J. Pinilla S. McEvoy N. Cullen C. P. Anasori B. Long E. Park S.-H. Seral-Ascaso A. Shmeliov A. Krishnan D. Morant C. Liu X. Duesberg G. S. Gogotsi Y. Nicolosi V. Chem. Mater. 2017;29:4848–4856. doi: 10.1021/acs.chemmater.7b00745. DOI
Salim O. Mahmoud K. A. Pant K. K. Joshi R. K. Mater. Today Chem. 2019;14:100191. doi: 10.1016/j.mtchem.2019.08.010. DOI
Persson P. O. Å. Rosen J. Curr. Opin. Solid State Mater. Sci. 2019;23:100774. doi: 10.1016/j.cossms.2019.100774. DOI
Chae Y. Kim S. J. Cho S.-Y. Choi J. Maleski K. Lee B.-J. Jung H.-T. Gogotsi Y. Lee Y. Ahn C. W. Nanoscale. 2019;11:8387–8393. doi: 10.1039/C9NR00084D. PubMed DOI
Chertopalov S. Mochalin V. N. ACS Nano. 2018;12:6109–6116. doi: 10.1021/acsnano.8b02379. PubMed DOI
Huang S. Mochalin V. N. Inorg. Chem. 2019;58:1958–1966. doi: 10.1021/acs.inorgchem.8b02890. PubMed DOI
Lotfi R. Naguib M. Yilmaz D. E. Nanda J. van Duin A. C. T. J. Mater. Chem. A. 2018;6:12733–12743. doi: 10.1039/C8TA01468J. DOI
Xia F. Lao J. Yu R. Sang X. Luo J. Li Y. Wu J. Nanoscale. 2019;11:23330–23337. doi: 10.1039/C9NR07236E. PubMed DOI
Petukhov D. I. Chumakov A. P. Kan A. S. Lebedev V. A. Eliseev A. A. Konovalov O. V. Eliseev A. A. Nanoscale. 2019;11:9980–9986. doi: 10.1039/C9NR00525K. PubMed DOI
Soomro R. A. Zhang P. Fan B. Wei Y. Xu B. Nano-Micro Lett. 2023;15:108. doi: 10.1007/s40820-023-01069-7. PubMed DOI PMC
Liu N. Li Q. Wan H. Chang L. Wang H. Fang J. Ding T. Wen Q. Zhou L. Xiao X. Nat. Commun. 2022;13:5551. doi: 10.1038/s41467-022-33280-2. PubMed DOI PMC
Riazi H. Anayee M. Hantanasirisakul K. Shamsabadi A. A. Anasori B. Gogotsi Y. Soroush M. Adv. Mater. Interfaces. 2020;7:1902008. doi: 10.1002/admi.201902008. DOI
Natu V. Hart J. L. Sokol M. Chiang H. Taheri M. L. Barsoum M. W. Angew. Chem., Int. Ed. 2019;58:12655–12660. doi: 10.1002/anie.201906138. PubMed DOI
Wang Y. Fu J. Xu J. Hu H. Ho D. ACS Appl. Mater. Interfaces. 2023;15:12232–12239. doi: 10.1021/acsami.2c22609. PubMed DOI
Bark H. Thangavel G. Liu R. J. Chua D. H. Lee P. S. Small Methods. 2023:2300077. doi: 10.1002/smtd.202300077. PubMed DOI
Swapnalin J. Koneru B. Pothu R. Banerjee P. Boddula R. Radwan A. B. Al-Qahtani R. Appl. Phys. Lett. 2023;122:161902. doi: 10.1063/5.0142053. DOI
Wu C. W. Unnikrishnan B. Chen I. W. P. Harroun S. G. Chang H. T. Huang C. C. Energy Storage Mater. 2020;25:563–571. doi: 10.1016/j.ensm.2019.09.026. DOI
Ko T. Y. Kim D. Kim S. J. Kim H. Nissimagoudar A. S. Lee S. C. Lin X. Cummings P. T. Doo S. Park S. Hassan T. Oh T. Chae A. Lee J. Gogotsi Y. In I. Koo C. M. ACS Nano. 2023;17:1112–1119. doi: 10.1021/acsnano.2c08209. PubMed DOI
Shin H. Lee H. Seo Y. Jeong W. Han T. H. Langmuir. 2023;39:2358–2367. doi: 10.1021/acs.langmuir.2c03094. PubMed DOI
Yan J. Liu P. F. Wen H. X. Liu H. J. ChemistrySelect. 2022;7:e202201733. doi: 10.1002/slct.202201733. DOI
Liu Z. H. Wang Q. M. Lü Q. F. Wu J. Colloids Surf., A. 2022;640:128396. doi: 10.1016/j.colsurfa.2022.128396. DOI
Mozafari M. Soroush M. Mater. Adv. 2021;2:7277–7307. doi: 10.1039/D1MA00625H. DOI
Lorencova L. Gajdosova V. Hroncekova S. Bertok T. Jerigova M. Velic D. Sobolciak P. Krupa I. Kasak P. Tkac J. Front. Chem. 2020;8:553. doi: 10.3389/fchem.2020.00553. PubMed DOI PMC
Popelka A. Padmanabhan A. C. Elgendy A. S. Sobolciak P. Krupa I. Yousaf A. B. Sebesta M. Tkac J. Kasak P. Mater. Today Commun. 2023;35:105529. doi: 10.1016/j.mtcomm.2023.105529. DOI
Fang Y. Wei Z. Guan Z. Shan N. Zhao Y. Liu F. Fu L. Huang Z. Humphrey M. G. Zhang C. J. Mater. Chem. C. 2023;11:7331–7344. doi: 10.1039/D3TC00868A. DOI
Bagheri S. Chilcott R. Luo S. Sinitskii A. Langmuir. 2022;38:12924–12934. doi: 10.1021/acs.langmuir.2c02058. PubMed DOI
Kumar A. N. Pal K. Mater. Adv. 2022;3:5151–5162. doi: 10.1039/D2MA00301E. DOI
Neubertova V. Guselnikova O. Yamauchi Y. Olshtrem A. Rimpelova S. Čižmár E. Orendáč M. Duchon J. Volfova L. Lancok J. Herynek V. Fitl P. Ulbrich P. Jelinek L. Schneider P. Kosek J. Postnikov P. Kolska Z. Svorcik V. Chertopalov S. Lyutakov O. Chem. Eng. J. 2022;446:136939. doi: 10.1016/j.cej.2022.136939. DOI
Olshtrem A. Chertopalov S. Guselnikova O. Valiev R. R. Cieslar M. Miliutina E. Elashnikov R. Fitl P. Postnikov P. Lancok J. Svorcik V. Lyutakov O. 2D Mater. 2021;8:045037. doi: 10.1088/2053-1583/ac27c0. DOI
Olshtrem A. Panov I. Chertopalov S. Zaruba K. Vokata B. Sajdl P. Lancok J. Storch J. Církva V. Svorcik V. Kartau M. Karimullah A. S. Vana J. Lyutakov O. Adv. Funct. Mater. 2023;33:2212786. doi: 10.1002/adfm.202212786. DOI
Chernova E. A. Petukhov D. I. Chumakov A. P. Kirianova A. V. Sadilov I. S. Kapitanova O. O. Boytsova O. V. Valeev R. G. Roth S. V. Eliseev A. A. Eliseev A. A. Carbon. 2021;183:404–414. doi: 10.1016/j.carbon.2021.07.011. DOI
Buffet A. Rothkirch A. Döhrmann R. Körstgens V. Abul Kashem M. M. Perlich J. Herzog G. Schwartzkopf M. Gehrke R. Müller-Buschbaum P. Roth S. V. J. Synchrotron Radiat. 2012;19:647–653. doi: 10.1107/S0909049512016895. PubMed DOI PMC
Sarycheva A. Gogotsi Y. Chem. Mater. 2020;32:3480–3488. doi: 10.1021/acs.chemmater.0c00359. DOI
Eliseev A. A. Poyarkov A. A. Chernova E. A. Eliseev A. A. Chumakov A. P. Konovalov O. V. Petukhov D. I. 2D Mater. 2019;6:035039. doi: 10.1088/2053-1583/ab15ec. DOI
Lei J.-C. Zhang X. Zhou Z. Front. Phys. 2015;10:276–286. doi: 10.1007/s11467-015-0493-x. DOI
Petukhov D. I. Kan A. S. Chumakov A. P. Konovalov O. V. Valeev R. G. Eliseev A. A. J. Membr. Sci. 2021;621:118994. doi: 10.1016/j.memsci.2020.118994. DOI
Wu C. Wang A. C. Ding W. Guo H. Wang Z. L. Adv. Energy Mater. 2019;9:1802906. doi: 10.1002/aenm.201802906. DOI
Dong K. Peng X. Wang Z. L. Adv. Mater. 2020;32:1902549. doi: 10.1002/adma.201902549. PubMed DOI
An H. Habib T. Shah S. Gao H. Patel A. Echols I. Zhao X. F. Radovic M. Green M. J. Lutkenhaus J. L. ACS Appl. Nano Mater. 2019;2:948–955. doi: 10.1021/acsanm.8b02265. DOI
Li N. Jiang Y. Zhou C. Xiao Y. Meng B. Wang Z. Huang D. Xing Ch. Peng Z. ACS Appl. Mater. Interfaces. 2019;11:38116–38125. doi: 10.1021/acsami.9b12168. PubMed DOI
Lee Y. Joon Kim S. Kim Y.-J. Lim Y. Chae Y. Lee B.-J. Kim Y.-T. Han H. Gogotsi Y. Won Ahn C. J. Mater. Chem. A. 2020;8:573–581. doi: 10.1039/C9TA07036B. DOI
Athavale S. Micci-Barreca S. Arole K. Kotasthane V. Blivin J. Cao H. Lutkenhaus J. L. Radovic M. Green M. J. Langmuir. 2023;39:918–928. doi: 10.1021/acs.langmuir.2c02051. PubMed DOI
Deng Z. Li L. Tang P. Jiao C. Yu Z. Z. Koo C. M. Zhang H. B. ACS Nano. 2022;16:16976–16986. doi: 10.1021/acsnano.2c07084. PubMed DOI