Perspectives: SARS-CoV-2 Spike Convergent Evolution as a Guide to Explore Adaptive Advantage
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35711666
PubMed Central
PMC9197234
DOI
10.3389/fcimb.2022.748948
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, convergent evolution, mutations, spike (S) protein, virus,
- MeSH
- aminokyseliny MeSH
- glykoprotein S, koronavirus * genetika MeSH
- mutace MeSH
- nukleotidy MeSH
- SARS-CoV-2 * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aminokyseliny MeSH
- glykoprotein S, koronavirus * MeSH
- nukleotidy MeSH
- spike protein, SARS-CoV-2 MeSH Prohlížeč
Viruses rapidly co-evolve with their hosts. The 9 million sequenced SARS-CoV-2 genomes by March 2022 provide a detailed account of viral evolution, showing that all amino acids have been mutated many times. However, only a few became prominent in the viral population. Here, we investigated the emergence of the same mutations in unrelated parallel lineages and the extent of such convergent evolution on the molecular level in the spike (S) protein. We found that during the first phase of the pandemic (until mid 2021, before mass vaccination) 31 mutations evolved independently ≥3-times within separated lineages. These included all the key mutations in SARS-CoV-2 variants of concern (VOC) at that time, indicating their fundamental adaptive advantage. The omicron added many more mutations not frequently seen before, which can be attributed to the synergistic nature of these mutations, which is more difficult to evolve. The great majority (24/31) of S-protein mutations under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. Furthermore, among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favoured. Next, we determined the mutation space in the S protein that has been covered by SARS-CoV-2. We found that all amino acids that are reachable by single nucleotide changes have been probed multiple times in early 2021. The substitutions requiring two nucleotide changes have recently (late 2021) gained momentum and their numbers are increasing rapidly. These provide a large mutation landscape for SARS-CoV-2 future evolution, on which research should focus now.
Department of Biomolecular Sciences Weizmann Institute of Science Rehovot Israel
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
Awasthi M., Gulati S., Sarkar D. P., Tiwari S., Kateriya S., Ranjan P., et al. . (2020). The Sialoside-Binding Pocket of SARS-CoV-2 Spike Glycoprotein Structurally Resembles MERS-CoV. Viruses 12 (9), 909. doi: 10.3390/v12090909 PubMed DOI PMC
Burioni R., Topol E. J. (2021). Has SARS-CoV-2 Reached Peak Fitness? Nat. Med. 27, 1323–1324. doi: 10.1038/s41591-021-01421-7 PubMed DOI
Chen L., Zody M. C., Germanio C. D., Martinelli R., Mediavilla J. R., Cunningham M. H., et al. . (2021). Emergence of Multiple SARS-CoV-2 Antibody Escape Variants in an Immunocompromised Host Undergoing Convalescent Plasma Treatment. mSphere 6 (4), e00480–e00421. doi: 10.1128/mSphere.00480-21 PubMed DOI PMC
Cherian S., Potdar V., Jadhav S., Yadav P., Gupta N., Das M., et al. . (2021). SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India. Microorganisms 9 (7), 1542. doi: 10.3390/microorganisms9071542 PubMed DOI PMC
Choi B., Choudhary M. C., Regan J., Sparks J. A., Padera R. F., Qiu X., et al. . (2020). Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N. Engl. J. Med. 383 (23), 2291–2293. doi: 10.1056/NEJMc2031364 PubMed DOI PMC
Clark S. A., Clark L. E., Pan J., Coscia A., McKay L. G.A., Shankar S., et al. . (2021). SARS-CoV-2 Evolution in an Immunocompromised Host Reveals Shared Neutralization Escape Mechanisms. Cell 184 (10), 2605–2617.e2618. doi: 10.1016/j.cell.2021.03.027 PubMed DOI PMC
Dejnirattisai W., Huo J., Zhou D., Zahradník J., Supasa P., Liu C., et al. . (2022). SARS-CoV-2 Omicron-B.1.1.529 Leads to Widespread Escape From Neutralizing Antibody Responses. Cell 185 (3), 467–484.e415. doi: 10.1016/j.cell.2021.12.046 PubMed DOI PMC
De Maio N., Walker C. R., Turakhia Y., Lanfear R., Corbett-Detig R., Goldman N., et al. . (2021). Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2. Genome Biol. Evol. 13 (5), evab087. doi: 10.1093/gbe/evab087 PubMed DOI PMC
Hadfield J., Megill C., Bell S. M., Huddleston J., Potter B., Callender C., et al. . (2018). Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 34 (23), 4121–4123. doi: 10.1093/bioinformatics/bty407 PubMed DOI PMC
Hodcroft E. B., Domman D. B., Snyder D. J., Oguntuyo K., Van Diest M., Densmore K. H., et al. . (2021). Emergence in Late 2020 of Multiple Lineages of SARS-CoV-2 Spike Protein Variants Affecting Amino Acid Position 677. medRxiv, 2021.2002.2012.21251658. doi: 10.1101/2021.02.12.21251658 PubMed DOI
Johnson B. A., Xie X., Bailey A. L., Kalveram B., Lokugamage K. G., Muruato A., et al. . (2021). Loss of Furin Cleavage Site Attenuates SARS-CoV-2 Pathogenesis. Nature 591 (7849), 293–299. doi: 10.1038/s41586-021-03237-4 PubMed DOI PMC
Kemp S. A., Collier D. A., Datir R. P., Ferreira I. A.T.M., Gayed S., Jahun A., et al. . (2021). SARS-CoV-2 Evolution During Treatment of Chronic Infection. Nature 592 (7853), 277–282. doi: 10.1038/s41586-021-03291-y PubMed DOI PMC
Lemmermann N. A., Lieb B., Laufs T., Renzaho A., Runkel S., Kohnen W., et al. . (2021). SARS-CoV-2 Genome Surveillance in Mainz, Germany, Reveals Convergent Origin of the N501Y Spike Mutation in a Hospital Setting. medRxiv, 2021.2002.2011.21251324. doi: 10.1101/2021.02.11.21251324 DOI
Li Y., Wang T., Zhang J., Shao B., Gong H., Wang Y., et al. . (2021). Exploring the Regulatory Function of the N-Terminal Domain of SARS-CoV-2 Spike Protein Through Molecular Dynamics Simulation. Adv. Theory Simul. 4 (10), 2100152. doi: 10.1002/adts.202100152 PubMed DOI PMC
Majumdar P., Niyogi S. (2021). SARS-CoV-2 Mutations: The Biological Trackway Towards Viral Fitness. Epidemiol. Infect. 149, e110. doi: 10.1017/S0950268821001060 PubMed DOI PMC
Martin D. P., Weaver S., Tegally H., San J. E., Shank S. D., Wilkinson E., et al. . (2021). The Emergence and Ongoing Convergent Evolution of the SARS-CoV-2 N501Y Lineages. Cell 184 (20), 5189–5200.e5187. doi: 10.1016/j.cell.2021.09.003 PubMed DOI PMC
Motozono C., Toyoda M., Zahradnik J., Saito A., Nasser H., Tan T. S., et al. . (2021). SARS-CoV-2 Spike L452R Variant Evades Cellular Immunity and Increases Infectivity. Cell Host Microbe. doi: 10.1016/j.chom.2021.06.006 PubMed DOI PMC
Ramazzotti D., Angaroni F., Maspero D., Gambacorti-Passerini C., Antoniotti M., Graudenzi A., et al. . (2021). VERSO: A Comprehensive Framework for the Inference of Robust Phylogenies and the Quantification of Intra-Host Genomic Diversity of Viral Samples. Patterns 2 (3), 100212. doi: 10.1016/j.patter.2021.100212 PubMed DOI PMC
Shu Y., McCauley J. (2017). GISAID: Global Initiative on Sharing All Influenza Data - From Vision to Reality. Euro. Surveill. 22 (13), 30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494 PubMed DOI PMC
Starr T. N., Greaney A. J., Hilton S. K., Ellis D., Crawford K. H.D., Dingens A. S., et al. . (2020). Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182 (5), 1295–1310.e1220. doi: 10.1016/j.cell.2020.08.012 PubMed DOI PMC
Tarhini H., Recoing A., Bridier-Nahmias A., Rahi M., Lambert C., Martres P., et al. . (2021). Long Term SARS-CoV-2 Infectiousness Among Three Immunocompromised Patients: From Prolonged Viral Shedding to SARS-CoV-2 Superinfection. J. Infect. Dis 223(9):1522–1527. doi: 10.1093/infdis/jiab075 PubMed DOI PMC
Truong T. T., Ryutov A., Pandey U., Yee R., Goldberg L., Bhojwani D., et al. . (2021). Increased Viral Variants in Children and Young Adults With Impaired Humoral Immunity and Persistent SARS-CoV-2 Infection: A Consecutive Case Series. EBioMedicine 67, 103355. doi: 10.1016/j.ebiom.2021.103355 PubMed DOI PMC
Tsueng G., Mullen J., Alkuzweny M., Cano M., Rush B., Haag E., et al. . (2022). Outbreak.info Research Library: A Standardized, Searchable Platform to Discover and Explore COVID-19 Resources and Data. bioRxiv, 2022.2001.2020.477133. doi: 2022.2001.2020.477133 PubMed PMC
Venkatakrishnan A. J., Anand P., Lenehan P., Ghosh P., Suratekar R., Siroha A., et al. . (2021). Antigenic Minimalism of SARS-CoV-2 is Linked to Surges in COVID-19 Community Transmission and Vaccine Breakthrough Infections. medRxiv, 2021.2005.2023.21257668. doi: 10.1101/2021.05.23.21257668 DOI
Volz E., Hill V., McCrone J. T., Price A., Jorgensen D., O'Toole Á., et al. . (2021). Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 184 (1), 64–75.e11. doi: 10.1016/j.cell.2020.11.020 PubMed DOI PMC
Webb B., Sali A. (2016). Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinf. 54, 5.6.1–5.6.37. doi: 10.1002/cpbi.3 PubMed DOI PMC
Xia S., Lan Q., Su S., Wang X., Xu W., Liu Z., et al. . (2020). The Role of Furin Cleavage Site in SARS-CoV-2 Spike Protein-Mediated Membrane Fusion in the Presence or Absence of Trypsin. Signal Transduct. Targeted Ther. 5 (1), 92. doi: 10.1038/s41392-020-0184-0 PubMed DOI PMC
Zahradník J., Marciano S., Shemesh M., Zoler E., Harari D., Chiaravalli J., et al. . (2021). SARS-CoV-2 Variant Prediction and Antiviral Drug Design are Enabled by RBD In Vitro Evolution. Nat. Microbiol. 6 (9), 1188–1198. doi: 10.1038/s41564-021-00954-4 PubMed DOI
Zhou H.-Y., Ji C.-Y., Fan H., Han N., Li X.-F., Wu A., et al. . (2021). Convergent Evolution of SARS-CoV-2 in Human and Animals. Protein Cell. 12 (11), 832– 835. doi: 10.1007/s13238-021-00847-6 PubMed DOI PMC
Zhu S., Liu Y., Zhou Z., Zhang Z., Xiao X., Liu Z., et al. . (2021). Genome-Wide CRISPR Activation Screen Identifies Candidate Receptors for SARS-CoV-2 Entry. Sci. China Life Sci. 1–17. doi: 10.1007/s11427-021-1990-5 PubMed DOI PMC
Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics