Perspectives: SARS-CoV-2 Spike Convergent Evolution as a Guide to Explore Adaptive Advantage

. 2022 ; 12 () : 748948. [epub] 20220527

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35711666

Viruses rapidly co-evolve with their hosts. The 9 million sequenced SARS-CoV-2 genomes by March 2022 provide a detailed account of viral evolution, showing that all amino acids have been mutated many times. However, only a few became prominent in the viral population. Here, we investigated the emergence of the same mutations in unrelated parallel lineages and the extent of such convergent evolution on the molecular level in the spike (S) protein. We found that during the first phase of the pandemic (until mid 2021, before mass vaccination) 31 mutations evolved independently ≥3-times within separated lineages. These included all the key mutations in SARS-CoV-2 variants of concern (VOC) at that time, indicating their fundamental adaptive advantage. The omicron added many more mutations not frequently seen before, which can be attributed to the synergistic nature of these mutations, which is more difficult to evolve. The great majority (24/31) of S-protein mutations under convergent evolution tightly cluster in three functional domains; N-terminal domain, receptor-binding domain, and Furin cleavage site. Furthermore, among the S-protein receptor-binding motif mutations, ACE2 affinity-improving substitutions are favoured. Next, we determined the mutation space in the S protein that has been covered by SARS-CoV-2. We found that all amino acids that are reachable by single nucleotide changes have been probed multiple times in early 2021. The substitutions requiring two nucleotide changes have recently (late 2021) gained momentum and their numbers are increasing rapidly. These provide a large mutation landscape for SARS-CoV-2 future evolution, on which research should focus now.

Zobrazit více v PubMed

Awasthi M., Gulati S., Sarkar D. P., Tiwari S., Kateriya S., Ranjan P., et al. . (2020). The Sialoside-Binding Pocket of SARS-CoV-2 Spike Glycoprotein Structurally Resembles MERS-CoV. Viruses 12 (9), 909. doi: 10.3390/v12090909 PubMed DOI PMC

Burioni R., Topol E. J. (2021). Has SARS-CoV-2 Reached Peak Fitness? Nat. Med. 27, 1323–1324. doi: 10.1038/s41591-021-01421-7 PubMed DOI

Chen L., Zody M. C., Germanio C. D., Martinelli R., Mediavilla J. R., Cunningham M. H., et al. . (2021). Emergence of Multiple SARS-CoV-2 Antibody Escape Variants in an Immunocompromised Host Undergoing Convalescent Plasma Treatment. mSphere 6 (4), e00480–e00421. doi: 10.1128/mSphere.00480-21 PubMed DOI PMC

Cherian S., Potdar V., Jadhav S., Yadav P., Gupta N., Das M., et al. . (2021). SARS-CoV-2 Spike Mutations, L452R, T478K, E484Q and P681R, in the Second Wave of COVID-19 in Maharashtra, India. Microorganisms 9 (7), 1542. doi: 10.3390/microorganisms9071542 PubMed DOI PMC

Choi B., Choudhary M. C., Regan J., Sparks J. A., Padera R. F., Qiu X., et al. . (2020). Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. N. Engl. J. Med. 383 (23), 2291–2293. doi: 10.1056/NEJMc2031364 PubMed DOI PMC

Clark S. A., Clark L. E., Pan J., Coscia A., McKay L. G.A., Shankar S., et al. . (2021). SARS-CoV-2 Evolution in an Immunocompromised Host Reveals Shared Neutralization Escape Mechanisms. Cell 184 (10), 2605–2617.e2618. doi: 10.1016/j.cell.2021.03.027 PubMed DOI PMC

Dejnirattisai W., Huo J., Zhou D., Zahradník J., Supasa P., Liu C., et al. . (2022). SARS-CoV-2 Omicron-B.1.1.529 Leads to Widespread Escape From Neutralizing Antibody Responses. Cell 185 (3), 467–484.e415. doi: 10.1016/j.cell.2021.12.046 PubMed DOI PMC

De Maio N., Walker C. R., Turakhia Y., Lanfear R., Corbett-Detig R., Goldman N., et al. . (2021). Mutation Rates and Selection on Synonymous Mutations in SARS-CoV-2. Genome Biol. Evol. 13 (5), evab087. doi: 10.1093/gbe/evab087 PubMed DOI PMC

Hadfield J., Megill C., Bell S. M., Huddleston J., Potter B., Callender C., et al. . (2018). Nextstrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics 34 (23), 4121–4123. doi: 10.1093/bioinformatics/bty407 PubMed DOI PMC

Hodcroft E. B., Domman D. B., Snyder D. J., Oguntuyo K., Van Diest M., Densmore K. H., et al. . (2021). Emergence in Late 2020 of Multiple Lineages of SARS-CoV-2 Spike Protein Variants Affecting Amino Acid Position 677. medRxiv, 2021.2002.2012.21251658. doi: 10.1101/2021.02.12.21251658 PubMed DOI

Johnson B. A., Xie X., Bailey A. L., Kalveram B., Lokugamage K. G., Muruato A., et al. . (2021). Loss of Furin Cleavage Site Attenuates SARS-CoV-2 Pathogenesis. Nature 591 (7849), 293–299. doi: 10.1038/s41586-021-03237-4 PubMed DOI PMC

Kemp S. A., Collier D. A., Datir R. P., Ferreira I. A.T.M., Gayed S., Jahun A., et al. . (2021). SARS-CoV-2 Evolution During Treatment of Chronic Infection. Nature 592 (7853), 277–282. doi: 10.1038/s41586-021-03291-y PubMed DOI PMC

Lemmermann N. A., Lieb B., Laufs T., Renzaho A., Runkel S., Kohnen W., et al. . (2021). SARS-CoV-2 Genome Surveillance in Mainz, Germany, Reveals Convergent Origin of the N501Y Spike Mutation in a Hospital Setting. medRxiv, 2021.2002.2011.21251324. doi: 10.1101/2021.02.11.21251324 DOI

Li Y., Wang T., Zhang J., Shao B., Gong H., Wang Y., et al. . (2021). Exploring the Regulatory Function of the N-Terminal Domain of SARS-CoV-2 Spike Protein Through Molecular Dynamics Simulation. Adv. Theory Simul. 4 (10), 2100152. doi: 10.1002/adts.202100152 PubMed DOI PMC

Majumdar P., Niyogi S. (2021). SARS-CoV-2 Mutations: The Biological Trackway Towards Viral Fitness. Epidemiol. Infect. 149, e110. doi: 10.1017/S0950268821001060 PubMed DOI PMC

Martin D. P., Weaver S., Tegally H., San J. E., Shank S. D., Wilkinson E., et al. . (2021). The Emergence and Ongoing Convergent Evolution of the SARS-CoV-2 N501Y Lineages. Cell 184 (20), 5189–5200.e5187. doi: 10.1016/j.cell.2021.09.003 PubMed DOI PMC

Motozono C., Toyoda M., Zahradnik J., Saito A., Nasser H., Tan T. S., et al. . (2021). SARS-CoV-2 Spike L452R Variant Evades Cellular Immunity and Increases Infectivity. Cell Host Microbe. doi: 10.1016/j.chom.2021.06.006 PubMed DOI PMC

Ramazzotti D., Angaroni F., Maspero D., Gambacorti-Passerini C., Antoniotti M., Graudenzi A., et al. . (2021). VERSO: A Comprehensive Framework for the Inference of Robust Phylogenies and the Quantification of Intra-Host Genomic Diversity of Viral Samples. Patterns 2 (3), 100212. doi: 10.1016/j.patter.2021.100212 PubMed DOI PMC

Shu Y., McCauley J. (2017). GISAID: Global Initiative on Sharing All Influenza Data - From Vision to Reality. Euro. Surveill. 22 (13), 30494. doi: 10.2807/1560-7917.ES.2017.22.13.30494 PubMed DOI PMC

Starr T. N., Greaney A. J., Hilton S. K., Ellis D., Crawford K. H.D., Dingens A. S., et al. . (2020). Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding. Cell 182 (5), 1295–1310.e1220. doi: 10.1016/j.cell.2020.08.012 PubMed DOI PMC

Tarhini H., Recoing A., Bridier-Nahmias A., Rahi M., Lambert C., Martres P., et al. . (2021). Long Term SARS-CoV-2 Infectiousness Among Three Immunocompromised Patients: From Prolonged Viral Shedding to SARS-CoV-2 Superinfection. J. Infect. Dis 223(9):1522–1527. doi: 10.1093/infdis/jiab075 PubMed DOI PMC

Truong T. T., Ryutov A., Pandey U., Yee R., Goldberg L., Bhojwani D., et al. . (2021). Increased Viral Variants in Children and Young Adults With Impaired Humoral Immunity and Persistent SARS-CoV-2 Infection: A Consecutive Case Series. EBioMedicine 67, 103355. doi: 10.1016/j.ebiom.2021.103355 PubMed DOI PMC

Tsueng G., Mullen J., Alkuzweny M., Cano M., Rush B., Haag E., et al. . (2022). Outbreak.info Research Library: A Standardized, Searchable Platform to Discover and Explore COVID-19 Resources and Data. bioRxiv, 2022.2001.2020.477133. doi: 2022.2001.2020.477133 PubMed PMC

Venkatakrishnan A. J., Anand P., Lenehan P., Ghosh P., Suratekar R., Siroha A., et al. . (2021). Antigenic Minimalism of SARS-CoV-2 is Linked to Surges in COVID-19 Community Transmission and Vaccine Breakthrough Infections. medRxiv, 2021.2005.2023.21257668. doi: 10.1101/2021.05.23.21257668 DOI

Volz E., Hill V., McCrone J. T., Price A., Jorgensen D., O'Toole Á., et al. . (2021). Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell 184 (1), 64–75.e11. doi: 10.1016/j.cell.2020.11.020 PubMed DOI PMC

Webb B., Sali A. (2016). Comparative Protein Structure Modeling Using MODELLER. Curr. Protoc. Bioinf. 54, 5.6.1–5.6.37. doi: 10.1002/cpbi.3 PubMed DOI PMC

Xia S., Lan Q., Su S., Wang X., Xu W., Liu Z., et al. . (2020). The Role of Furin Cleavage Site in SARS-CoV-2 Spike Protein-Mediated Membrane Fusion in the Presence or Absence of Trypsin. Signal Transduct. Targeted Ther. 5 (1), 92. doi: 10.1038/s41392-020-0184-0 PubMed DOI PMC

Zahradník J., Marciano S., Shemesh M., Zoler E., Harari D., Chiaravalli J., et al. . (2021). SARS-CoV-2 Variant Prediction and Antiviral Drug Design are Enabled by RBD In Vitro Evolution. Nat. Microbiol. 6 (9), 1188–1198. doi: 10.1038/s41564-021-00954-4 PubMed DOI

Zhou H.-Y., Ji C.-Y., Fan H., Han N., Li X.-F., Wu A., et al. . (2021). Convergent Evolution of SARS-CoV-2 in Human and Animals. Protein Cell. 12 (11), 832– 835. doi: 10.1007/s13238-021-00847-6 PubMed DOI PMC

Zhu S., Liu Y., Zhou Z., Zhang Z., Xiao X., Liu Z., et al. . (2021). Genome-Wide CRISPR Activation Screen Identifies Candidate Receptors for SARS-CoV-2 Entry. Sci. China Life Sci. 1–17. doi: 10.1007/s11427-021-1990-5 PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Multiple mutations of SARS-CoV-2 Omicron BA.2 variant orchestrate its virological characteristics

. 2023 Oct 31 ; 97 (10) : e0101123. [epub] 20231005

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...