Creation and Plasmon-Assisted Photosensitization of Annealed Z-Schemes for Sunlight-Only Water Splitting
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37279106
PubMed Central
PMC10288442
DOI
10.1021/acsami.3c02884
Knihovny.cz E-zdroje
- Klíčová slova
- Z-scheme, artificial leaf, overall water splitting, plasmon photosensitization, sunlight,
- Publikační typ
- časopisecké články MeSH
Solely light-induced water splitting represents a promising avenue for a carbon-free energy future, based on reliable energy sources. Such processes can be performed using coupled semiconductor materials (the so-called direct Z-scheme design) that facilitate spatial separation of (photo)excited electrons and holes, prevent their recombination, and allow water-splitting half-reactions proceeding at each corresponding semiconductor side. In this work, we proposed and prepared a specific structure, based on WO3g-x/CdWO4/CdS coupled semiconductors, created by annealing of a common WO3/CdS direct Z-scheme. WO3-x/CdWO4/CdS flakes were further combined with a plasmon-active grating for the creation of the so-called artificial leaf design, making possible complete utilization of the sunlight spectrum. The proposed structure enables water splitting with high production of stoichiometric amounts of oxygen and hydrogen without undesirable catalyst photodegradation. Several control experiments confirm the creation of electrons and holes participating in the water splitting half-reaction in a spatially selective manner.
Zobrazit více v PubMed
Acar C.; Bicer Y.; Demir M. E.; Dincer I. Transition to a New Era with Light-Based Hydrogen Production for a Carbon-Free Society: An Overview. Int. J. Hydrogen Energy 2019, 44, 25347–25364. 10.1016/j.ijhydene.2019.08.010. DOI
Chen L.; Msigwa G.; Yang M.; Osman A. I.; Fawzy S.; Rooney D. W.; Yap P.-S. Strategies to Achieve a Carbon Neutral Society: A Review. Environ. Chem. Lett. 2022, 20, 2277–2310. 10.1007/s10311-022-01435-8. PubMed DOI PMC
Fajrina N.; Tahir M. A Critical Review in Strategies to Improve Photocatalytic Water Splitting towards Hydrogen Production. Int. J. Hydrogen Energy 2019, 44, 540–577. 10.1016/j.ijhydene.2018.10.200. DOI
Singla S.; Sharma S.; Basu S.; Shetti N. P.; Aminabhavi T. M. Photocatalytic Water Splitting Hydrogen Production via Environmental Benign Carbon Based Nanomaterials. Int. J. Hydrogen Energy 2021, 46, 33696–33717. 10.1016/j.ijhydene.2021.07.187. DOI
Zabelina A.; Zabelin D.; Miliutina E.; Lancok J.; Svorcik V.; Chertopalov S.; Lyutakov O. Surface Plasmon-Polariton Triggering of Ti3C2Tx MXene Catalytic Activity for Hydrogen Evolution Reaction Enhancement. J. Mater. Chem. A 2021, 9, 17770–17779. 10.1039/D1TA04505A. DOI
Sherryna A.; Tahir M. Role of Ti3C2 MXene as Prominent Schottky Barriers in Driving Hydrogen Production through Photoinduced Water Splitting: A Comprehensive Review. ACS Appl. Energy Mater. 2021, 4, 11982–12006. 10.1021/acsaem.1c02241. DOI
Siavash Moakhar R.; Hosseini-Hosseinabad S. M.; Masudy-Panah S.; Seza A.; Jalali M.; Fallah-Arani H.; Dabir F.; Gholipour S.; Abdi Y.; Bagheri-Hariri M.; Riahi-Noori N.; Lim Y.-F.; Hagfeldt A.; Saliba M. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review. Adv. Mater. 2021, 33, 200728510.1002/adma.202007285. PubMed DOI PMC
Zabelin D.; Zabelina A.; Tulupova A.; Elashnikov R.; Kolska Z.; Svorcik V.; Lyutakov O. A Surface Plasmon Polariton-Triggered Z-Scheme for Overall Water Splitting and Solely Light-Induced Hydrogen Generation. J. Mater. Chem. A 2022, 10, 13829–13838. 10.1039/D2TA02365B. DOI
Zou Z.; Ye J.; Sayama K.; Arakawa H. Direct Splitting of Water under Visible Light Irradiation with an Oxide Semiconductor Photocatalyst. Nature 2001, 414, 625–627. 10.1038/414625a. PubMed DOI
Buravets V.; Hosek F.; Lapcak L.; Miliutina E.; Sajdl P.; Elashnikov R.; Švorčík V.; Lyutakov O. Beyond the Platinum Era—Scalable Preparation and Electrochemical Activation of TaS2 Flakes. ACS Appl. Mater. Interfaces 2023, 15, 5679–5686. 10.1021/acsami.2c20261. PubMed DOI PMC
Li Q.; Guo B.; Yu J.; Ran J.; Zhang B.; Yan H.; Gong J. R. Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production of CdS-Cluster-Decorated Graphene Nanosheets. J. Am. Chem. Soc. 2011, 133, 10878–10884. 10.1021/ja2025454. PubMed DOI
Zabelin D.; Zabelina A.; Miliutina E.; Trelin A.; Elashnikov R.; Nazarov D.; Maximov M.; Kalachyova Y.; Sajdl P.; Lancok J.; Vondracek M.; Svorcik V.; Lyutakov O. Design of Hybrid Au Grating/TiO2 Structure for NIR Enhanced Photo-Electrochemical Water Splitting. Chem. Eng. J. 2022, 443, 13644010.1016/j.cej.2022.136440. DOI
Cheng S.; Xiong Q.; Zhao C.; Yang X. Synergism of 1D CdS/2D Modified Ti3C2Tx MXene Heterojunctions for Boosted Photocatalytic Hydrogen Production. Chin. J. Struct. Chem. 2022, 41, 2208058–2208064. 10.14102/j.cnki.0254-5861.2022-0151. DOI
Wang X.; Li Y.; Li T.; Jin Z. Synergistic Effect of Bimetallic Sulfide Enhances the Performance of CdS Photocatalytic Hydrogen Evolution. Adv. Sustain. Syst. 2023, 7, 220013910.1002/adsu.202200139. DOI
Jiang Z.; Chen Q.; Zheng Q.; Shen R.; Zhang P.; Li X. Constructing 1D/2D Schottky-Based Heterojunctions between Mn0.2Cd0.8S Nanorods and Ti3C2 Nanosheets for Boosted Photocatalytic H2 Evolution. Acta Phys.-Chim. Sin. 2020, 201005910.3866/PKU.WHXB202010059. DOI
Zheng W.; Feng W.; Zhang X.; Chen X.; Liu G.; Qiu Y.; Hasan T.; Tan P.; Hu P. A. Anisotropic Growth of Nonlayered CdS on MoS2 Monolayer for Functional Vertical Heterostructures. Adv. Funct. Mater. 2016, 26, 2648–2654. 10.1002/adfm.201504775. DOI
Li Y.; Wang L.; Cai T.; Zhang S.; Liu Y.; Song Y.; Dong X.; Hu L. Glucose-Assisted Synthesize 1D/2D Nearly Vertical CdS/MoS2 Heterostructures for Efficient Photocatalytic Hydrogen Evolution. Chem. Eng. J. 2017, 321, 366–374. 10.1016/j.cej.2017.03.139. DOI
Tang R.; Zhou S.; Zhang Z.; Zheng R.; Huang J. Engineering Nanostructure–Interface of Photoanode Materials Toward Photoelectrochemical Water Oxidation. Adv. Mater. 2021, 33, 200538910.1002/adma.202005389. PubMed DOI
Liu Y.; Yang Y.; Liu Q.; He H.; Liu W.; Meng D.; Li Y.; Li W.; Li J. Films of WO3 Plate-like Arrays with Oxygen Vacancies Proportionally Controlled via Rapid Chemical Reduction. Int. J. Hydrogen Energy 2018, 43, 208–218. 10.1016/j.ijhydene.2017.11.094. DOI
Ma X.-W.; Lin H.-F.; Li Y.-Y.; Wang L.; Pu X.-P.; Yi X.-J. Dramatically Enhanced Visible-light-responsive H2 Evolution of Cd(1-x)ZnxS via the Synergistic Effect of Ni2P and 1T/2H MoS2 Cocatalysts. Chin. J. Struct. Chem. 2021, 40, 7–22. 10.14102/j.cnki.0254-5861.2011-2752. DOI
Yang Y.; Wu J.; Cheng B.; Zhang L.; Al-Ghamdi A. A.; Wageh S.; Li Y.; Yang Y.; Wu J.; Cheng B.; Zhang L.; Al-Ghamdi A. A.; Wageh S.; Li Y. Enhanced Photocatalytic H2-production Activity of CdS Nanoflower using Single Atom Pt and Graphene Quantum Dot as dual Cocatalysts. Chin. J. Struct. Chem. 2022, 41, 2206006–2206014. 10.14102/j.cnki.0254-5861.2022-0124. DOI
Hu H.; Zhang K.; Yan G.; Shi L.; Jia B.; Huang H.; Zhang Y.; Sun X.; Ma T. Precisely Decorating CdS on Zr-MOFs through Pore Functionalization Strategy: A Highly Efficient Photocatalyst for H2 Production. Chin. J. Catal. 2022, 43, 2332–2341. 10.1016/S1872-2067(21)63949-9. DOI
Hu Y.; Gao X.; Yu L.; Wang Y.; Ning J.; Xu S.; David Lou X. W. Carbon-Coated CdS Petalous Nanostructures with Enhanced Photostability and Photocatalytic Activity. Angew. Chem., Int. Ed. 2013, 52, 5636–5639. 10.1002/anie.201301709. PubMed DOI
Xu Y.; Zhao W.; Xu R.; Shi Y.; Zhang B. Synthesis of Ultrathin CdS Nanosheets as Efficient Visible-Light-Driven Water Splitting Photocatalysts for Hydrogen Evolution. Chem. Commun. 2013, 49, 9803–9805. 10.1039/C3CC46342G. PubMed DOI
Wang Z.; Luo Y.; Hisatomi T.; Vequizo J. J. M.; Suzuki S.; Chen S.; Nakabayashi M.; Lin L.; Pan Z.; Kariya N.; Yamakata A.; Shibata N.; Takata T.; Teshima K.; Domen K. Sequential Cocatalyst Decoration on BaTaO2N towards Highly-Active Z-Scheme Water Splitting. Nat. Commun. 2021, 12, 1005.10.1038/s41467-021-21284-3. PubMed DOI PMC
Duong H. P.; Mashiyama T.; Kobayashi M.; Iwase A.; Kudo A.; Asakura Y.; Yin S.; Kakihana M.; Kato H. Z-Scheme Water Splitting by Microspherical Rh-Doped SrTiO3 Photocatalysts Prepared by a Spray Drying Method. Appl. Catal., B 2019, 252, 222–229. 10.1016/j.apcatb.2019.04.009. DOI
Pan Z.; Zhang G.; Wang X. Polymeric Carbon Nitride/Reduced Graphene Oxide/Fe2O3: All-Solid-State Z-Scheme System for Photocatalytic Overall Water Splitting. Angew. Chem., Int. Ed. 2019, 131, 7176–7180. 10.1002/ange.201902634. PubMed DOI
Guo X.; Chang C.; Wang G.; Hao X.; Jin Z. CoV-LDH-Derived CoP2 Active Sites and ZnxCd1–xS Solid-Solution Ingeniously Constructed S-Scheme Heterojunction for Photocatalytic Hydrogen Evolution. Adv. Sustain. Syst. 2023, 7, 220018910.1002/adsu.202200189. DOI
Shen R.; Zhang L.; Chen X.; Jaroniec M.; Li N.; Li X. Integrating 2D/2D CdS/α-Fe2O3 Ultrathin Bilayer Z-Scheme Heterojunction with Metallic β-NiS Nanosheet-Based Ohmic-Junction for Efficient Photocatalytic H2 Evolution. Appl. Catal., B 2020, 266, 11861910.1016/j.apcatb.2020.118619. DOI
Mei Z.; Wang G.; Yan S.; Wang J. Rapid Microwave-Assisted Synthesis of 2D/1D ZnIn2S4/TiO2 S-Scheme Heterojunction for Catalyzing Photocatalytic Hydrogen Evolution. Acta Phys.-Chim. Sin. 2020, 200909710.3866/PKU.WHXB202009097. DOI
Xu Q.; Zhang L.; Yu J.; Wageh S.; Al-Ghamdi A. A.; Jaroniec M. Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications. Mater. Today 2018, 21, 1042–1063. 10.1016/j.mattod.2018.04.008. DOI
Stelo F.; Kublik N.; Ullah S.; Wender H. Recent Advances in Bi2MoO6 Based Z-Scheme Heterojunctions for Photocatalytic Degradation of Pollutants. J. Alloys Compd. 2020, 829, 15459110.1016/j.jallcom.2020.154591. DOI
Bai J.; Shen R.; Jiang Z.; Zhang P.; Li Y.; Li X. Integration of 2D Layered CdS/WO3 S-Scheme Heterojunctions and Metallic Ti3C2 MXene-Based Ohmic Junctions for Effective Photocatalytic H2 Generation. Chin. J. Catal. 2022, 43, 359–369. 10.1016/S1872-2067(21)63883-4. DOI
Gao R.; He H.; Bai J.; Hao L.; Shen R.; Zhang P.; Li Y.; Li X. Pyrene-benzothiadiazole-based Polymer/CdS 2D/2D Organic/Inorganic Hybrid S-scheme Heterojunction for Efficient Photocatalytic H2 Evolution. Chin. J. Struct. Chem. 2022, 41, 31–45. 10.14102/j.cnki.0254-5861.2022-0096. DOI
Ding C.; Zhao C.; Cheng S.; Yang X. Ultrahigh Photocatalytic Hydrogen Evolution Performance of Coupled 1D CdS/1T-Phase Dominated 2D WS2 Nanoheterojunctions. Chin. J. Catal. 2022, 43, 403–409. 10.1016/S1872-2067(21)63844-5. DOI
Abdul Nasir J.; Munir A.; Ahmad N.; Haq T. U.; Khan Z.; Rehman Z. Photocatalytic Z-Scheme Overall Water Splitting: Recent Advances in Theory and Experiments. Adv. Mater. 2021, 33, 210519510.1002/adma.202105195. PubMed DOI
Lin S.; Ren H.; Wu Z.; Sun L.; Zhang X.-G.; Lin Y.-M.; Zhang K. H. L.; Lin C.-J.; Tian Z.-Q.; Li J.-F. Direct Z-Scheme WO3-x Nanowire-Bridged TiO2 Nanorod Arrays for Highly Efficient Photoelectrochemical Overall Water Splitting. J. Energy Chem. 2021, 59, 721–729. 10.1016/j.jechem.2020.12.010. DOI
Zhao Z.; Dai K.; Zhang J.; Dawson G. In Situ Preparation of Mn0.2Cd0.8S-Diethylenetriamine/Porous g-C3N4 S-Scheme Heterojunction with Enhanced Photocatalytic Hydrogen Production. Adv. Sustain. Syst. 2023, 7, 210049810.1002/adsu.202100498. DOI
Liu Y.; Liu N.; Chen Y.; Zhang W.; Qu R.; Zhang Q.; Tzungyu-Shih; Feng L.; Wei Y. A Versatile CeO2/Co3O4 Coated Mesh for Food Wastewater Treatment: Simultaneous Oil Removal and UV Catalysis of Food Additives. Water Res. 2018, 137, 144–152. 10.1016/j.watres.2018.03.007. PubMed DOI
Jin C.; Wang M.; Li Z.; Kang J.; Zhao Y.; Han J.; Wu Z. Two Dimensional Co3O4/g-C3N4 Z-Scheme Heterojunction: Mechanism Insight into Enhanced Peroxymonosulfate-Mediated Visible Light Photocatalytic Performance. Chem. Eng. J. 2020, 398, 12556910.1016/j.cej.2020.125569. DOI
Yang Y.; Cheng W.; Cheng Y. F. Preparation of Co3O4@ZnO Core-Shell Nanocomposites with Intrinsic p-n Junction as High-Performance Photoelectrodes for Photoelectrochemical Cathodic Protection under Visible Light. Appl. Surf. Sci. 2019, 476, 815–821. 10.1016/j.apsusc.2019.01.157. DOI
Fang X.; Song J.; Pu T.; Wang C.; Yin C.; Wang J.; Kang S.; Shi H.; Zuo Y.; Wang Y.; Cui L. Graphitic Carbon Nitride-Stabilized CdS@CoS Nanorods: An Efficient Visible-Light-Driven Photocatalyst for Hydrogen Evolution with Enhanced Photo-Corrosion Resistance. Int. J. Hydrogen Energy 2017, 42, 28183–28192. 10.1016/j.ijhydene.2017.09.075. DOI
Jiang D.; Irfan R. M.; Sun Z.; Lu D.; Du P. Synergistic Effect of a Molecular Cocatalyst and a Heterojunction in a 1D Semiconductor Photocatalyst for Robust and Highly Efficient Solar Hydrogen Production. ChemSusChem 2016, 9, 3084–3092. 10.1002/cssc.201600871. PubMed DOI
Sun Z.; Lv B.; Li J.; Xiao M.; Wang X.; Du P. Core–Shell Amorphous Cobalt Phosphide/Cadmium Sulfide Semiconductor Nanorods for Exceptional Photocatalytic Hydrogen Production under Visible Light. J. Mater. Chem. A 2016, 4, 1598–1602. 10.1039/C5TA07561K. DOI
Zhang J.; Wang Y.; Jin J.; Zhang J.; Lin Z.; Huang F.; Yu J. Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g-C3N4 Nanowires. ACS Appl. Mater. Interfaces 2013, 5, 10317–10324. 10.1021/am403327g. PubMed DOI
Xiao Y.-H.; Zhang W.-D. MoS2 Quantum Dots Interspersed WO3 Nanoplatelet Arrays with Enhanced Photoelectrochemical Activity. Electrochim. Acta 2017, 252, 416–423. 10.1016/j.electacta.2017.09.011. DOI
Guselnikova O.; Trelin A.; Miliutina E.; Elashnikov R.; Sajdl P.; Postnikov P.; Kolska Z.; Svorcik V.; Lyutakov O. Plasmon-Induced Water Splitting—through Flexible Hybrid 2D Architecture up to Hydrogen from Seawater under NIR Light. ACS Appl. Mater. Interfaces 2020, 12, 28110–28119. 10.1021/acsami.0c04029. PubMed DOI
Wang R.; Yan J.; Zu M.; Yang S.; Cai X.; Gao Q.; Fang Y.; Zhang S.; Zhang S. Facile Synthesis of Interlocking g-C3N4/CdS Photoanode for Stable Photoelectrochemical Hydrogen Production. Electrochim. Acta 2018, 279, 74–83. 10.1016/j.electacta.2018.05.076. DOI
Wang H.; Naghadeh S. B.; Li C.; Ying L.; Allen A.; Zhang J. Z. Enhanced Photoelectrochemical and Photocatalytic Activities of CdS Nanowires by Surface Modification with MoS2 Nanosheets. Sci. China Mater. 2018, 61, 839–850. 10.1007/s40843-017-9172-x. DOI
Liu J.; Lin C.; Yao H.; Zhang S.; Fang D.; Jiang L.; Wang D.; Zhang Z.; Wang J. Construction of High-Proportion Ternary Dual Z-Scheme Co3O4/NiCo2O4/NiO Photocatalytic System via Incomplete Solid Phase Chemical Reactions of Co(OH)2 and Ni(OH)2 for Organic Pollutant Degradation with Simultaneous Hydrogen Production. J. Power Sources 2021, 506, 23015910.1016/j.jpowsour.2021.230159. DOI
Tada H.; Mitsui T.; Kiyonaga T.; Akita T.; Tanaka K. All-Solid-State Z-Scheme in CdS–Au–TiO2 Three-Component Nanojunction System. Nat. Mater. 2006, 5, 782–786. 10.1038/nmat1734. PubMed DOI
Su R.-R.; Yu Y.-X.; Xiao Y.-H.; Yang X.; Zhang W.-D. Earth Abundant ZnO/CdS/CuSbS2 Core-Shell Nanowire Arrays as Highly Efficient Photoanode for Hydrogen Evolution. Int. J. Hydrogen Energy 2018, 43, 6040–6048. 10.1016/j.ijhydene.2018.02.007. DOI
Wang D.; Liu J.; Zhang M.; Song Y.; Zhang Z.; Wang J. Construction of Ternary Annular 2Z-Scheme+1Heterojunction CuO/WO3/CdS/Photocatalytic System for Methylene Blue Degradation with Simultaneous Hydrogen Production. Appl. Surf. Sci. 2019, 498, 14384310.1016/j.apsusc.2019.143843. DOI
Zhang X.; Wang X.; Chai J.; Xue S.; Wang R.; Jiang L.; Wang J.; Zhang Z.; Dionysiou D. D. Construction of Novel Symmetric Double Z-Scheme BiFeO3/CuBi2O4/BaTiO3 Photocatalyst with Enhanced Solar-Light-Driven Photocatalytic Performance for Degradation of Norfloxacin. Appl. Catal., B 2020, 272, 11901710.1016/j.apcatb.2020.119017. DOI
Wang K.; Xing Z.; Meng D.; Zhang S.; Li Z.; Pan K.; Zhou W. Hollow MoSe2@Bi2S3/CdS Core-Shell Nanostructure as Dual Z-Scheme Heterojunctions with Enhanced Full Spectrum Photocatalytic-Photothermal Performance. Appl. Catal., B 2021, 281, 11948210.1016/j.apcatb.2020.119482. DOI
Zhao G.; Ding J.; Zhou F.; Chen X.; Wei L.; Gao Q.; Wang K.; Zhao Q. Construction of a Visible-Light-Driven Magnetic Dual Z-Scheme BiVO4/g-C3N4/NiFe2O4 Photocatalyst for Effective Removal of Ofloxacin: Mechanisms and Degradation Pathway. Chem. Eng. J. 2021, 405, 12670410.1016/j.cej.2020.126704. DOI
Wang D.; Wang X.; Liu J.; Zhang M.; Song Y.; Zhang Z.; Wang J. Preparation of High Proportion of Z-Scheme Er3+:Y3Al5O12@Nb2O5/Pt/In2O3 Composite for Enhanced Visible-Light Driven Photocatalytic Hydrogen Production. Mater. Sci. Eng. 2020, 257, 11454910.1016/j.mseb.2020.114549. DOI
Jin J.; Yu J.; Guo D.; Cui C.; Ho W. A Hierarchical Z-Scheme CdS–WO3 Photocatalyst with Enhanced CO2 Reduction Activity. Small 2015, 11, 5262–5271. 10.1002/smll.201500926. PubMed DOI
Ding J.; Dai Z.; Qin F.; Zhao H.; Zhao S.; Chen R. Z-Scheme BiO1-XBr/Bi2O2CO3 Photocatalyst with Rich Oxygen Vacancy as Electron Mediator for Highly Efficient Degradation of Antibiotics. Appl. Catal., B 2017, 205, 281–291. 10.1016/j.apcatb.2016.12.018. DOI
Jia T.; Wu J.; Song J.; Liu Q.; Wang J.; Qi Y.; He P.; Qi X.; Yang L.; Zhao P. In Situ Self-Growing 3D Hierarchical BiOBr/BiOIO3 Z-Scheme Heterojunction with Rich Oxygen Vacancies and Iodine Ions as Carriers Transfer Dual-Channels for Enhanced Photocatalytic Activity. Chem. Eng. J. 2020, 396, 12525810.1016/j.cej.2020.125258. DOI
Chaulagain N.; Alam K. M.; Kadian S.; Kumar N.; Garcia J.; Manik G.; Shankar K. Synergistic Enhancement of the Photoelectrochemical Performance of TiO2 Nanorod Arrays through Embedded Plasmon and Surface Carbon Nitride Co-Sensitization. ACS Appl. Mater. Interfaces 2022, 14, 24309–24320. 10.1021/acsami.2c02649. PubMed DOI
Zeng S.; Vahidzadeh E.; VanEssen C. G.; Kar P.; Kisslinger R.; Goswami A.; Zhang Y.; Mahdi N.; Riddell S.; Kobryn A. E.; Gusarov S.; Kumar P.; Shankar K. Optical Control of Selectivity of High Rate CO2 Photoreduction via Interband- or Hot Electron Z-Scheme Reaction Pathways in Au-TiO2 Plasmonic Photonic Crystal Photocatalyst. Appl. Catal., B 2020, 267, 11864410.1016/j.apcatb.2020.118644. DOI
Vahidzadeh E.; Zeng S.; Alam K. M.; Kumar P.; Riddell S.; Chaulagain N.; Gusarov S.; Kobryn A. E.; Shankar K. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting. ACS Appl. Mater. Interfaces 2021, 13, 42741–42752. 10.1021/acsami.1c10698. PubMed DOI
Kalanur S. S.; Yoo I.-H.; Cho I.-S.; Seo H. Effect of Oxygen Vacancies on the Band Edge Properties of WO3 Producing Enhanced Photocurrents. Electrochim. Acta 2019, 296, 517–527. 10.1016/j.electacta.2018.11.061. DOI
Liu Q.; Wang F.; Lin H.; Xie Y.; Tong N.; Lin J.; Zhang X.; Zhang Z.; Wang X. Surface Oxygen Vacancy and Defect Engineering of WO3 for Improved Visible Light Photocatalytic Performance. Catal. Sci. Technol. 2018, 8, 4399–4406. 10.1039/C8CY00994E. DOI
Rong F.; Lu Q.; Mai H.; Chen D.; Caruso R. A. Hierarchically Porous WO3/CdWO4 Fiber-in-Tube Nanostructures Featuring Readily Accessible Active Sites and Enhanced Photocatalytic Effectiveness for Antibiotic Degradation in Water. ACS Appl. Mater. Interfaces 2021, 13, 21138–21148. 10.1021/acsami.0c22825. PubMed DOI
Fu J.; Xu Q.; Low J.; Jiang C.; Yu J. Ultrathin 2D/2D WO3/g-C3N4 Step-Scheme H2-Production Photocatalyst. Appl. Catal., B 2019, 243, 556–565. 10.1016/j.apcatb.2018.11.011. DOI
Nagakawa H.; Ochiai T.; Konuma S.; Nagata M. Visible-Light Overall Water Splitting by CdS/WO3/CdWO4 Tricomposite Photocatalyst Suppressing Photocorrosion. ACS Appl. Energy Mater. 2018, 1, 6730–6735. 10.1021/acsaem.8b01600. DOI
Zhou Z.; Han F.; Guo L.; Prezhdo O. Understanding Divergent Behaviors in the Photocatalytic Hydrogen Evolution Reaction on CdS and ZnS: A DFT Based Study. Phys. Chem. Chem. Phys. 2016, 18, 16862–16869. 10.1039/C6CP02599D. PubMed DOI
Poliukhova V.; Khan S.; Qiaohong Z.; Zhang J.; Kim D.; Kim S.; Cho S.-H. ZnS/ZnO Nanosheets Obtained by Thermal Treatment of ZnS/Ethylenediamine as a Z-Scheme Photocatalyst for H2 Generation and Cr(VI) Reduction. Appl. Surf. Sci. 2022, 575, 15177310.1016/j.apsusc.2021.151773. DOI
Chia X.; Pumera M. Characteristics and Performance of Two-Dimensional Materials for Electrocatalysis. Nat. Catal. 2018, 1, 909–921. 10.1038/s41929-018-0181-7. DOI
Hajiahmadi Z.; Azar Y. T. Computational Study of h-WO3 Surfaces as a Semiconductor in Water-Splitting Application. Surf. Interfaces 2022, 28, 10169510.1016/j.surfin.2021.101695. DOI
Huirache-Acuña R.; Paraguay-Delgado F.; Albiter M. A.; Alvarez-Contreras L.; Rivera-Muñoz E. M.; Alonso-Núñez G. Synthesis and Characterization of WO3 and WS2 Hexagonal Phase Nanostructures and Catalytic Test in Sulfur Remotion. J. Mater. Sci. 2009, 44, 4360–4369. 10.1007/s10853-009-3652-z. DOI
Ning X.; Lu G. Photocorrosion Inhibition of CdS-Based Catalysts for Photocatalytic Overall Water Splitting. Nanoscale 2020, 12, 1213–1223. 10.1039/C9NR09183A. PubMed DOI
Ning X.; Zhen W.; Wu Y.; Lu G. Inhibition of CdS Photocorrosion by Al2O3 Shell for Highly Stable Photocatalytic Overall Water Splitting under Visible Light Irradiation. Appl. Catal., B 2018, 226, 373–383. 10.1016/j.apcatb.2017.12.067. DOI
Diao J.; Yuan W.; Qiu Y.; Cheng L.; Guo X. A Hierarchical Oxygen Vacancy-Rich WO3 with “Nanowire-Array-on-Nanosheet-Array” Structure for Highly Efficient Oxygen Evolution Reaction. J. Mater. Chem. A 2019, 7, 6730–6739. 10.1039/C9TA01044K. DOI
Yang M.; He H.; Du J.; Peng H.; Ke G.; Zhou Y. Insight into the Kinetic Influence of Oxygen Vacancies on the WO3 Photoanodes for Solar Water Oxidation. J. Phys. Chem. Lett. 2019, 10, 6159–6165. 10.1021/acs.jpclett.9b02365. PubMed DOI
Qiao S.; Feng C.; Chen T.; Kou Y.; Wang W.; Guo C.; Zhang Y.; Wang J. Spherical Shell CdS@NiO Z-Scheme Composites for Solar-Driven Overall Water Splitting and Carbon Dioxide Reduction. Mater. Today Energy 2022, 27, 10104410.1016/j.mtener.2022.101044. DOI
Su T.; Hood Z. D.; Naguib M.; Bai L.; Luo S.; Rouleau C. M.; Ivanov I. N.; Ji H.; Qin Z.; Wu Z. 2D/2D Heterojunction of Ti3C2/g-C3N4 Nanosheets for Enhanced Photocatalytic Hydrogen Evolution. Nanoscale 2019, 11, 8138–8149. 10.1039/C9NR00168A. PubMed DOI
Ng B.-J.; Putri L. K.; Kong X. Y.; Pasbakhsh P.; Chai S.-P. Z-Scheme Photocatalyst Sheets with P-Doped Twinned Zn0.5Cd0.5S1-x and Bi4NbO8Cl Connected by Carbon Electron Mediator for Overall Water Splitting under Ambient Condition. Chem. Eng. J. 2021, 404, 12703010.1016/j.cej.2020.127030. DOI
Kržmanc M.; Daneu N.; Čontala A.; Santra S.; Kamal K. M.; Likozar B.; Spreitzer M. SrTiO3/Bi4Ti3O12 Nanoheterostructural Platelets Synthesized by Topotactic Epitaxy as Effective Noble-Metal-Free Photocatalysts for pH-Neutral Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 370–381. 10.1021/acsami.0c16253. PubMed DOI PMC
Watanabe K.; Iwase A.; Kudo A. Solar Water Splitting over Rh0.5Cr1.5O3 - loaded AgTaO3 of a Valence-Band-Controlled Metal Oxide Photocatalyst. Chem. Sci. 2020, 11, 2330–2334. 10.1039/C9SC05909A. PubMed DOI PMC
Lei Y.; Zhang Y.; Li Z.; Xu S.; Huang J.; Hoong Ng K.; Lai Y. Molybdenum Sulfide Cocatalyst Activation upon Photodeposition of Cobalt for Improved Photocatalytic Hydrogen Production Activity of ZnCdS. Chem. Eng. J. 2021, 425, 13147810.1016/j.cej.2021.131478. DOI
Zou Y.; Shi J.-W.; Sun L.; Ma D.; Mao S.; Lv Y.; Cheng Y. Energy-Band-Controlled ZnxCd1–xIn2S4 Solid Solution Coupled with g-C3N4 Nanosheets as 2D/2D Heterostructure toward Efficient Photocatalytic H2 Evolution. Chem. Eng. J. 2019, 378, 12219210.1016/j.cej.2019.122192. DOI
Yan C.; Xue X.; Zhang W.; Li X.; Liu J.; Yang S.; Hu Y.; Chen R.; Yan Y.; Zhu G.; Kang Z.; Kang D. J.; Liu J.; Jin Z. Well-Designed Te/SnS2/Ag Artificial Nanoleaves for Enabling and Enhancing Visible-Light Driven Overall Splitting of Pure Water. Nano Energy 2017, 39, 539–545. 10.1016/j.nanoen.2017.07.039. DOI
Arif N.; Ma Y.; Iqbal M. A.; Zafar M. N.; Liang H.; Zhang Q.; Zeng Y.-J. Enhanced Charge Separation in Dual Z-Scheme Au Decorated LaFeO3-g-C3N4-BiFeO3 System for Efficient H2 Production. Fuel 2023, 336, 12683210.1016/j.fuel.2022.126832. DOI
Dai D.; Wang P.; Bao X.; Xu Y.; Wang Z.; Guo Y.; Wang Z.; Zheng Z.; Liu Y.; Cheng H.; Huang B. g-C3N4/ITO/Co-BiVO4 Z-Scheme Composite for Solar Overall Water Splitting. Chem. Eng. J. 2022, 433, 13447610.1016/j.cej.2021.134476. DOI
Hou F.; Lu K.; Liu F.; Xue F.; Liu M. Manipulating a TiO2-Graphene-Ta3N5 Heterojunction for Efficient Z-Scheme Photocatalytic Pure Water Splitting. Mater. Res. Bull. 2022, 150, 11178210.1016/j.materresbull.2022.111782. DOI
Drmosh Q. A.; Olanrewaju Alade I.; Alkanad K.; Alnaggar G.; Khan A.; Khan M. Y.; Elsayed K. A.; Manda A. A.; Kamal Hossain M. WO3/BP/g-C3N4 −Based Cauliflower Nanocomposite Fabricated by Pulsed Laser Ablation for Overall Water Splitting. Opt. Laser Technol. 2022, 151, 10801410.1016/j.optlastec.2022.108014. DOI
Li H.; Vequizo J. J. M.; Hisatomi T.; Nakabayashi M.; Xiao J.; Tao X.; Pan Z.; Li W.; Chen S.; Wang Z.; Shibata N.; Yamakata A.; Takata T.; Domen K. Zr-Doped BaTaO2N Photocatalyst Modified with Na–Pt Cocatalyst for Efficient Hydrogen Evolution and Z-Scheme Water Splitting. EES Catal. 2023, 1, 26–35. 10.1039/D2EY00031H. DOI
Wang H.; Qi H.; Sun X.; Jia S.; Li X.; Miao T. J.; Xiong L.; Wang S.; Zhang X.; Liu X.; Wang A.; Zhang T.; Huang W.; Tang J. High Quantum Efficiency of Hydrogen Production from Methanol Aqueous Solution with PtCu–TiO2 Photocatalysts. Nat. Mater. 2023, 1–626. 10.1038/s41563-023-01519-y. PubMed DOI
Ruan X.; Cui X.; Cui Y.; Fan X.; Li Z.; Xie T.; Ba K.; Jia G.; Zhang H.; Zhang L.; Zhang W.; Zhao X.; Leng J.; Jin S.; Singh D. J.; Zheng W. Favorable Energy Band Alignment of TiO2 Anatase/Rutile Heterophase Homojunctions Yields Photocatalytic Hydrogen Evolution with Quantum Efficiency Exceeding 45.6%. Adv. Energy Mater. 2022, 12, 220029810.1002/aenm.202200298. DOI
Li C.; Liu J.; Li H.; Wu K.; Wang J.; Yang Q. Covalent Organic Frameworks with High Quantum Efficiency in Sacrificial Photocatalytic Hydrogen Evolution. Nat. Commun. 2022, 13, 2357.10.1038/s41467-022-30035-x. PubMed DOI PMC
Zhang L. J.; Li S.; Liu B. K.; Wang D. J.; Xie T. F. Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light. ACS Catal. 2014, 4, 3724–3729. 10.1021/cs500794j. DOI
Zhang Y.; Hao X.; Ma X.; Liu H.; Jin Z. Special Z-Scheme CdS@WO3 Hetero-Junction Modified with CoP for Efficient Hydrogen Evolution. Int. J. Hydrogen Energy 2019, 44, 13232–13241. 10.1016/j.ijhydene.2019.03.168. DOI
Čermák J.; Koide Y.; Takeuchi D.; Rezek B. Spectrally Dependent Photovoltages in Schottky Photodiode Based on (100) B-Doped Diamond. J. Appl. Phys. 2014, 115, 05310510.1063/1.4864420. DOI
Verveniotis E.; Kromka A.; Rezek B. Controlling Electrostatic Charging of Nanocrystalline Diamond at Nanoscale. Langmuir 2013, 29, 7111–7117. 10.1021/la4008312. PubMed DOI
Iqbal A.; Kafizas A.; Sotelo-Vazquez C.; Wilson R.; Ling M.; Taylor A.; Blackman C.; Bevan K.; Parkin I.; Quesada-Cabrera R. Charge Transport Phenomena in Heterojunction Photocatalysts: The WO3/TiO2 System as an Archetypical Model. ACS Appl. Mater. Interfaces 2021, 13, 9781–9793. 10.1021/acsami.0c19692. PubMed DOI
Rosa W. S.; Rabelo L. G.; Tiveron Zampaulo L. G.; Gonçalves R. V. Ternary Oxide CuWO4/BiVO4/FeCoOx Films for Photoelectrochemical Water Oxidation: Insights into the Electronic Structure and Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2022, 14, 22858–22869. 10.1021/acsami.1c21001. PubMed DOI
Nogueira A. C.; Gomes L. E.; Ferencz J. A. P.; Rodrigues J. E. F. S.; Gonçalves R. V.; Wender H. Improved Visible Light Photoactivity of CuBi2O4/CuO Heterojunctions for Photodegradation of Methylene Blue and Metronidazole. J. Phys. Chem. C 2019, 123, 25680–25690. 10.1021/acs.jpcc.9b06907. DOI
Light Entrapment by Plasmonic Chiral Lock for Enhancement of 2D Flakes Catalytic Activity