Light Entrapment by Plasmonic Chiral Lock for Enhancement of 2D Flakes Catalytic Activity

. 2025 Jun 04 ; 17 (22) : 32553-32565. [epub] 20250521

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40397016

Plasmon-based triggering leads to an effective increase of material catalytic activity in a number of relevant photoelectrochemical transformations, including nitrogen reduction for the production of ammonia. The efficiency of the plasmon assistance can be significantly increased through the rational design of hybrid photoelectrodes, e.g., by placing a redox-active material at plasmonic hot spots that may arise between two coupled nanostructures. In this work, we describe the creation and utilization of chiral plasmon-active hybrid structures (based on the so-called gold helicoids) coupled with redox-active 2H-MoS2. The chiral plasmon-active gold nanoparticles (with the same or opposite chirality) were spatially separated by thin two-dimensional (2D) flakes to reach mutual plasmon coupling between them. Using numerical simulations and SERS measurements, the dependence of the local enhancement of the electric field (EF) inside the created plasmon-active diastereomer consisting of Au helicoid-2D MoS2-Au helicoid "sandwich structure", on the mutual chirality of the nanoparticles is demonstrated. It is found that the plasmon energy is more efficiently "concentrated" in the MoS2 space using the "chiral trap" of light energy (i.e., chiral plasmonic lock), even in the case where the chiral handedness of Au nanoparticles is matching. The created hybrid structures were subsequently used for nitrogen reduction and ammonia production proceeding on the MoS2 surface. A clear dependence of the catalytic activity of MoS2 on the matching or mismatching of Au helicoid chiralities (and related local value of EF) is observed. In particular, a two-time increase in the ammonia yield is obtained in the case of matching chirality, compared to that in the case of mismatched configuration or the control experiments performed with nonchiral Au nanocubes. Hence, the utilization of chiral plasmonic nanoparticles and their dimers (or multimers) provides an additional opportunity for even more effective photosensibilization of redox-active materials.

Zobrazit více v PubMed

Gramotnev D., Bozhevolnyi S.. Plasmonics beyond the diffraction limit. Nat. Photonics. 2010;4:83–91. doi: 10.1038/nphoton.2009.282. DOI

Anker J. N., Hall W. P., Lyandres O., Shah N. C., Zhao J., Van Duyne R. P.. Biosensing with plasmonic nanosensors. Nat. Mater. 2008;7:442–453. doi: 10.1038/nmat2162. PubMed DOI

Brongersma M. L., Halas N. J., Nordlander P.. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015;10:25–34. doi: 10.1038/nnano.2014.311. PubMed DOI

Kravets V. G., Kabashin A. V., Barnes W. L., Grigorenko A. N.. Plasmonic Surface Lattice Resonances: A Review of Properties and Applications. Chem. Rev. 2018;118:5912–5951. doi: 10.1021/acs.chemrev.8b00243. PubMed DOI PMC

Lu C., Li X., Wu Q., Li J., Wen L., Dai Y., Huang B., Li B., Lou Z.. Constructing Surface Plasmon Resonance on Bi2WO6 to Boost High-Selective CO2 Reduction for Methane. ACS Nano. 2021;15:3529–3539. doi: 10.1021/acsnano.1c00452. PubMed DOI

Liang W., Qin W., Li D., Wang Y., Guo W., Bi Y., Sun Y., Jiang L.. Localized surface plasmon resonance enhanced electrochemical nitrogen reduction reaction. Appl. Catal. B Environ. 2022;301:120808. doi: 10.1016/j.apcatb.2021.120808. DOI

Guselnikova O., Postnikov P., Chehimi M. M., Kalachyovaa Y., Svorcik V., Lyutakov O.. Surface Plasmon-Polariton: A Novel Way To Initiate Azide–Alkyne Cycloaddition. Langmuir. 2019;35:2023–2032. doi: 10.1021/acs.langmuir.8b03041. PubMed DOI

Zhan C., Yi J., Hu S., Zhang X., Wu D., Tian Z.. Plasmon-mediated chemical reactions. Nat. Rev. Methods Primers. 2023;3:12. doi: 10.1038/s43586-023-00195-1. DOI

Linic S., Christopher P., Ingram D. B.. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011;10:911–921. doi: 10.1038/nmat3151. PubMed DOI

Daniel M.-C., Astruc D.. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004;104(1):293–346. doi: 10.1021/cr030698+. PubMed DOI

Fujishima M., Kaida K., Naya S., Tada H.. Drastic Enhancement of Hydrogen Production from Water in Gold–Silver Sulfide Hybrid Quantum Dot-Sensitized Photoelectrochemical Cell through Plasmon–Plasmon–Exciton Coupling. J. Phys. Chem. C. 2024;128:14692–14699. doi: 10.1021/acs.jpcc.4c04431. DOI

Abdelmoneim A., Elfayoumi M. A. K., Abdel-wahab M. S., Al-Enizi A. M., Lee J. K., Tawfik W. Z.. Enhanced solar-driven photoelectrochemical water splitting using nanoflower Au/CuO/GaN hybrid photoanodes. RSC Adv. 2024;14:16846–16858. doi: 10.1039/D4RA01931H. PubMed DOI PMC

Yadav J., Singh J. P.. Surface plasmonic hot hole driven Ag2S/Au/Al2O3 photocathode for enhanced photoelectrochemical water splitting performance. Renewable Energy. 2024;228:120615. doi: 10.1016/j.renene.2024.120615. DOI

Kumar M., Ghosh C. C., Meena B., Ma T., Subrahmanyam C.. Plasmonic Au nanoparticle sandwiched CuBi2O4/Sb2S3 photocathode with multi-mediated electron transfer for efficient solar water splitting. Sustain. Energy Fuels. 2022;6:3961–3974. doi: 10.1039/D2SE00600F. DOI

Chen X., Xu W., Shi Z., Ji Y., Lyu J., Pan G., Zhu J., Tian Y., Li X., Song H.. Plasmonic gold nanorods decorated Ti3C2MXene quantum dots-interspersed nanosheet for full-spectrum photoelectrochemical water splitting. Chem. Eng. J. 2021;426:130818. doi: 10.1016/j.cej.2021.130818. DOI

Xu N., Li F., Gao L., Hu H., Hu Y., Long X., Ma J., Jin J. N.. Cu-Codoped Carbon Nanosheet/Au/CuBi2O4 Photocathodes for Efficient Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2018;6:7257–7264. doi: 10.1021/acssuschemeng.7b04133. DOI

Liang T., Tang Y., Song Y., Xie K., Ma Y., Yao Y.. Au nanoparticle-sensitized nitrogen-doped carbon applied for localized surface plasmon enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy. 2024;94:1106–1113. doi: 10.1016/j.ijhydene.2024.11.207. DOI

Zabelin D., Severa K., Kuliček J., Rezek B., Tulupova A., Elashnikov R., Zabelina A., Burtsev V., Sajdl P., Miliutina E., Svorcik V., Lyutakov O.. Creation and Plasmon-Assisted Photosensitization of Annealed Z-Schemes for Sunlight-Only Water Splitting. ACS Appl. Mater. Interfaces. 2023;15:29072–29083. doi: 10.1021/acsami.3c02884. PubMed DOI PMC

Wang M., Khan M. A., Mohsin I., Wicks J., Ip A. H., Sumon K. Z., Dinh C. T., Sargent E. H., Gates I. D., Kibria M. G.. Can sustainable ammonia synthesis pathways compete with fossil-fuel based Haber–Bosch processes? Energy Environ. Sci. 2021;14:2535–2548. doi: 10.1039/D0EE03808C. DOI

Zabelina A., Miliutina E., Dedek J., Trelin A., Zabelin D., Valiev R., Ramazanov R., Burtsev V., Popelkova D., Stastny M., Svorcik V., Lyutakov O.. Nitrogen Photoelectrochemical Reduction on TiB2 Surface Plasmon Coupling Allows Us to Reach Enhanced Efficiency of Ammonia Production. ACS Catal. 2023;13:10916–10926. doi: 10.1021/acscatal.3c03210. PubMed DOI PMC

Yang J., Guo Y., Jiang R., Qin F., Zhang H., Lu W., Wang J., Yu J. C.. High-Efficiency ″Working-in-Tandem″ Nitrogen Photofixation Achieved by Assembling Plasmonic Gold Nanocrystals on Ultrathin Titania Nanosheets. J. Am. Chem. Soc. 2018;140:8497–8508. doi: 10.1021/jacs.8b03537. PubMed DOI

Liang W., Xie M., Li D., Qin W., Dai C., Wang Y., Zhang H., Zhao B., Jin G., Sun Y., Jiang L.. Plasmon-Promoted Interatomic Hot Carriers Regulation Enhanced Electrocatalytic Nitrogen Reduction Reaction. Angew. Chem., Int. Ed. 2024;63:e202409484. doi: 10.1002/anie.202409484. PubMed DOI

Suganami Y., Oshikiri T., Shi X., Misawa H.. Water Oxidation under Modal Ultrastrong Coupling Conditions Using Gold/Silver Alloy Nanoparticles and Fabry–Pérot Nanocavities. Angew. Chem., Int. Ed. 2021;60:18438–18442. doi: 10.1002/anie.202103445. PubMed DOI PMC

Li W., Yao L., Zhang Z., Geng H., Li C., Yu Y., Sheng P., Li S.. Tiny Au nanoparticles mediation strategy for preparation of NIR CuInS2 QDs based 1D TiO2 hybrid photoelectrode with enhanced photocatalytic activity. Mater. Sci. Semicond. Process. 2019;99:106–113. doi: 10.1016/j.mssp.2019.04.021. DOI

Tufa L. T., Gicha B. B., Molla C. F., Nguyen H., Tran V. T., Nwaji N., Hu X., Chen H., Lee J.. Plasmon-enhanced photo/electrocatalysis: Harnessing hetero-nanostructures for sustainable energy and environmental applications. Appl. Phys. Rev. 2024;11:041336. doi: 10.1063/5.0205461. DOI

Kim S., Huynh L. T. M., Yoon S.. Which Nanoparticle Shape is the Most Effective in Generating Hot Charge Carriers from Plasmon Excitation? J. Phys. Chem. C. 2023;127:14776–14783. doi: 10.1021/acs.jpcc.3c03624. DOI

Boong S. K., Chong C., Lee J.-K., Ang Z. Z., Li H., Lee H. K.. Superlattice-based Plasmonic Catalysis: Concentrating Light at the Nanoscale to Drive Efficient Nitrogen-to-Ammonia Fixation at Ambient Conditions. Angew. Chem., Int. Ed. 2023;62(7):e202216562. doi: 10.1002/anie.202216562. PubMed DOI

Rechberger W., Hohenau A., Leitner A., Krenn J. R., Lamprecht B., Aussenegg F. R.. Optical properties of two interacting gold nanoparticles. Opt. Commun. 2003;220:137–141. doi: 10.1016/S0030-4018(03)01357-9. DOI

Chen K., Ding S. J., Luo Z. J., Pan G. M., Wang J. H., Liu J., Zhou L., Wang Q. Q.. Largely enhanced photocatalytic activity of Au/XS2/Au (X = Re, Mo) antenna–reactor hybrids: charge and energy transfer. Nanoscale. 2018;10:4130–4137. doi: 10.1039/C7NR09362D. PubMed DOI

Liu Y., Zhang Z., Fang Y., Liu B., Huang J., Miao F., Bao Y., Dong B.. IR-Driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane. Appl. Catal. B Environ. 2019;252:164–173. doi: 10.1016/j.apcatb.2019.04.035. DOI

Zabelina A., Miliutina E., Dedek J., Trelin A., Zabelin D., Valiev R., Ramazanov R., Burtsev V., Popelkova D., Stastny M., Svorcik V., Lyutakov O.. Nitrogen Photoelectrochemical Reduction on TiB2 Surface Plasmon Coupling Allows Us to Reach Enhanced Efficiency of Ammonia Production. ACS Catal. 2023;13:10916–10926. doi: 10.1021/acscatal.3c03210. PubMed DOI PMC

Kamimura S., Yamashita S., Abe S., Tsubota T., Ohno T.. Effect of core@shell (Au@Ag) nanostructure on surface plasmon-induced photocatalytic activity under visible light irradiation. Appl. Catal. B Environ. 2017;211:11–17. doi: 10.1016/j.apcatb.2017.04.028. DOI

Herran M., Juergensen S., Kessens M., Hoeing D., Köppen A., Sousa-Castillo A., Parak W. J., Lange H., Reich S., Schulz F., Cortes E.. Plasmonic bimetallic two-dimensional supercrystals for H2 generation. Nat. Catal. 2023;6:1205–1214. doi: 10.1038/s41929-023-01053-9. DOI

Hao C., Xu L., Ma W., Wu X., Wang L., Kuang H., Xu C.. Unusual Circularly Polarized Photocatalytic Activity in Nanogapped Gold–Silver Chiroplasmonic Nanostructures. Adv. Funct. Mater. 2015;25:5816–5822. doi: 10.1002/adfm.201502429. DOI

Zheng G., He J., Kumar V., Wang S., Pastoriza-Santos I., Pérez-Juste J., Liz-Marzán L. M., Wong K. Y.. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 2021;50:3738–3754. doi: 10.1039/C9CS00765B. PubMed DOI

Lee H. E., Ahn H. Y., Mun J., Lee Y. Y., Kim M., Cho N. H., Chang K., Kim W. S., Rho J., Nam K. T.. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature. 2018;556:360–365. doi: 10.1038/s41586-018-0034-1. PubMed DOI

Kim J. W., Cho N. H., Lim Y. C., Im S. W., Han J. H., Nam K. T.. Controlling the size and circular dichroism of chiral gold helicoids. Mater. Adv. 2021;2:6988–6995. doi: 10.1039/D1MA00783A. DOI

Collins J. T., Kuppe C., Hooper D. C., Sibilia C., Centini M., Valev V. K.. Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends. Adv. Opt. Mater. 2017;5:1700182. doi: 10.1002/adom.201700182. DOI

Halas N. J., Lal S., Chang W. S., Link S., Nordlander P.. Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011;111:3913–3961. doi: 10.1021/cr200061k. PubMed DOI

Bainova P., Joly J. P., Urbanova M., Votkina D., Erzina M., Vokata B., Trelin A., Fitl P., Audran G., Vanthuyne N., Vinklarek J., Svorcik V., Postnikov P., Marque S. R. A., Lyutakov O.. Plasmon-Assisted Chemistry Using Chiral Gold Helicoids: Toward Asymmetric Organic Catalysis. ACS Catal. 2023;13:12859–12867. doi: 10.1021/acscatal.3c02958. DOI

Kartau M., Skvortsova A., Tabouillot V., Chaubey S. K., Bainova P., Kumar R., Burtsev V., Svorcik V., Gadegaard N., Im S. W., Urbanova M., Lyutakov O., Kadodwala M., Karimullah A. S.. Chiral Metafilms and Surface Enhanced Raman Scattering for Enantiomeric Discrimination of Helicoid Nanoparticles. Adv. Opt. Mater. 2023;11:2202991. doi: 10.1002/adom.202202991. DOI

Linic S., Christopher P., Xin H., Marimuthu A.. Catalytic and Photocatalytic Transformations on Metal Nanoparticles with Targeted Geometric and Plasmonic Properties. Acc. Chem. Res. 2013;46(8):1890–1899. doi: 10.1021/ar3002393. PubMed DOI

Li K., Hogan N. J., Kale M. J., Halas N. J., Nordlander P., Christopher P.. Balancing Near-Field Enhancement, Absorption, and Scattering for Effective Antenna–Reactor Plasmonic Photocatalysis. Nano Lett. 2017;17(6):3710–3717. doi: 10.1021/acs.nanolett.7b00992. PubMed DOI

Wu H. L., Tsai H. R., Hung Y. T., Lao K. U., Liao C. W., Chung P. J., Huang J. S., Chen I. C., Huang M. H.. A Comparative Study of Gold Nanocubes, Octahedra, and Rhombic Dodecahedra as Highly Sensitive SERS Substrates. Inorg. Chem. 2011;50:8106–8111. doi: 10.1021/ic200504n. PubMed DOI

Ahn H. Y., Lee H. E., Jin K., Nam K. T.. Extended gold nano-morphology diagram: synthesis of rhombic dodecahedra using CTAB and ascorbic acid. J. Mater. Chem. C. 2013;1:6861–6868. doi: 10.1039/C3TC31135J. DOI

Liu J., Wang J., Wei B., Xue Y., Ma L., Jiang R.. Unveiling the Effect of Organic Sulfur Sources on Synthesized MoS2 Phases and Electrocatalytic Hydrogen Evolution Performances. Inorg. Chem. 2023;62:9749–9757. doi: 10.1021/acs.inorgchem.3c01436. PubMed DOI

Jawaid A., Nepal D., Park K., Jespersen M., Qualley A., Mirau P., Drummy L. F., Vaia R. A.. Mechanism for Liquid Phase Exfoliation of MoS2 . Chem. Mater. 2016;28:337–348. doi: 10.1021/acs.chemmater.5b04224. DOI

Johnson P. B., Christy R. W.. Optical Constants of the Noble Metals. Phys. Rev. B:Condens. Matter Mater. Phys. 1972;6:4370. doi: 10.1103/PhysRevB.6.4370. DOI

Lee H. E., Kim R. M., Ahn H. Y., Lee Y. Y., Byun G. H., Im S. W., Mun J., Rho J., Nam K. T.. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 2020;11:263. doi: 10.1038/s41467-019-14117-x. PubMed DOI PMC

Liu W., Han H., Wang J.. Recent Advances in the 3D Chiral Plasmonic Nanomaterials. Small. 2024;20:2305725. doi: 10.1002/smll.202305725. PubMed DOI

Baffou G., Bordacchini I., Baldi A., Quidant R.. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 2020;9:108. doi: 10.1038/s41377-020-00345-0. PubMed DOI PMC

Li S., Liu Y. T., Zhang Y. C., Du Y., Gao J., Zhai J., Liang Y., Han C., Zhu X. D.. Enhanced N2 Adsorption and Activation by Combining Re Clusters and In Vacancies as Dual Sites for Efficient and Selective Electrochemical NH3 Synthesis. Nano Lett. 2024;24:748–756. doi: 10.1021/acs.nanolett.3c04416. PubMed DOI

Younis M. A., Manzoor S., Ali A., Guo L., Yousaf M. I., Nosheen S., Naveed A., Ahmad N.. Nitrogen-vacancy-rich molybdenum nitride nanosheets as highly efficient electrocatalysts for nitrogen reduction reaction. Dalton Trans. 2024;53:1809–1816. doi: 10.1039/D3DT02761A. PubMed DOI

Fan S., Hu Y., Zhang T., Zhao Q., Li J., Liu G.. Highly selective environmental electrocatalytic nitrogen reduction to ammonia on Fe2(MoO4)3/C composite electrocatalyst. Int. J. Hydrogen Energy. 2024;51:1198–1206. doi: 10.1016/j.ijhydene.2023.09.141. DOI

Tao L., Huang L., Qin W., Pang K., Zhang M., Duan L., He Y., Zhu G., Wen C., Yu C., Ji H.. MoSe2 Nanosheets on Multilayer Ti3C2 MXenes with Optimized Se Vacancies for Improved Electrocatalytic N2 Reduction. ACS Appl. Nano Mater. 2023;6:21068–21078. doi: 10.1021/acsanm.3c04023. DOI

Peng Y. R., Tang S. Y., Yang T. Y., Sino P. A., Chen Y. C., Chaudhary M., Chen C. T., Cyu R. H., Chung C. C., Gu B. N., Liu M. J., Hsu C. H., Huang H. Y., Lee L., Wu S. C., Jen Y. Y., Cheng Y. S., Hu C. C., Miao W. C., Kuo H. C., Chueh Y. L.. Design of Electrocatalytic Janus WSeS/WSe2 Heterostructure Nanowall Electrodes with High Selectivity and Faradaic Efficiency for Nitrogen Reduction. Adv. Energy Mater. 2023;13:2301979. doi: 10.1002/aenm.202301979. DOI

Chu K., Luo Y., Shen P., Li X., Li Q., Guo Y.. Unveiling the Synergy of O-Vacancy and Heterostructure over MoO3-x/MXene for N2 Electroreduction to NH3 . Adv. Energy Mater. 2022;12:2103022. doi: 10.1002/aenm.202103022. DOI

Li X., Shen P., Luo Y., Li Y., Guo Y., Zhang H., Chu K.. PdFe Single-Atom Alloy Metallene for N2 Electroreduction. Angew. Chem., Int. Ed. 2022;61:202205923. doi: 10.1002/anie.202205923. PubMed DOI

Shen P., Li X., Luo Y., Guo Y., Zhao X., Chu K.. High-Efficiency N2 Electroreduction Enabled by Se-Vacancy-Rich WSe2–x in Water-in-Salt Electrolytes. ACS Nano. 2022;16:7915–7925. doi: 10.1021/acsnano.2c00596. PubMed DOI

Zhang H., Song B., Zhang W., Cheng Y., Chen Q., Lu K.. Activation of MoS2 monolayer electrocatalysts via reduction and phase control in molten sodium for selective hydrogenation of nitrogen to ammonia. Chem. Sci. 2022;13:9498–9506. doi: 10.1039/D2SC03804H. PubMed DOI PMC

Zeng L., Li X., Chen S., Wen J., Rahmati F., van der Zalm J., Chen A.. Highly boosted gas diffusion for enhanced electrocatalytic reduction of N2 to NH3 on 3D hollow Co–MoS2 nanostructures. Nanoscale. 2020;12:6029–6036. doi: 10.1039/C9NR09624H. PubMed DOI

Zeng L., Li X., Chen S., Wen J., Huang W., Chen A.. Unique hollow Ni–Fe@MoS2 nanocubes with boosted electrocatalytic activity for N2 reduction to NH3 . J. Mater. Chem. A. 2020;8:7339–7349. doi: 10.1039/C9TA13336D. DOI

Mishra B., Biswal S., Ussama M., Haider M. A., Tripathi B. P.. Rationally designed oxygen vacant TiO2 decorated with covalent organic framework for enhanced electrocatalytic nitrogen reduction to ammonia. Appl. Catal. B Environ. 2024;342:123395. doi: 10.1016/j.apcatb.2023.123395. DOI

Sun M., Ma C., Ma M., Wei Y., Dong S., Zhang X., Tian J., Shao M.. Electrochemical ammonia synthesis via nitrogen reduction reaction on 1T/2H mixed-phase MoSSe catalyst: Theoretical and experimental studies. Mater. Today Phys. 2023;30:100945. doi: 10.1016/j.mtphys.2022.100945. DOI

Takashima T., Fukasawa H., Mochida T., Irie H.. Cu-Doped Fe2O3 Nanorods for Enhanced Electrocatalytic Nitrogen Fixation to Ammonia. ACS Appl. Nano Mater. 2023;6:23381–23389. doi: 10.1021/acsanm.3c04712. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...