Nitrogen Photoelectrochemical Reduction on TiB2 Surface Plasmon Coupling Allows Us to Reach Enhanced Efficiency of Ammonia Production

. 2023 Aug 18 ; 13 (16) : 10916-10926. [epub] 20230803

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37614521

Ammonia is one of the most widely produced chemicals worldwide, which is consumed in the fertilizer industry and is also considered an interesting alternative in energy storage. However, common ammonia production is energy-demanding and leads to high CO2 emissions. Thus, the development of alternative ammonia production methods based on available raw materials (air, for example) and renewable energy sources is highly demanding. In this work, we demonstrated the utilization of TiB2 nanostructures sandwiched between coupled plasmonic nanostructures (gold nanoparticles and gold grating) for photoelectrochemical (PEC) nitrogen reduction and selective ammonia production. The utilization of the coupled plasmon structure allows us to reach efficient sunlight capture with a subdiffraction concentration of light energy in the space, where the catalytically active TiB2 flakes were placed. As a result, PEC experiments performed at -0.2 V (vs. RHE) and simulated sunlight illumination give the 535.2 and 491.3 μg h-1 mgcat-1 ammonia yields, respectively, with the utilization of pure nitrogen and air as a nitrogen source. In addition, a number of control experiments confirm the key role of plasmon coupling in increasing the ammonia yield, the selectivity of ammonia production, and the durability of the proposed system. Finally, we have performed a series of numerical and quantum mechanical calculations to evaluate the plasmonic contribution to the activation of nitrogen on the TiB2 surface, indicating an increase in the catalytic activity under the plasmon-generated electric field.

Zobrazit více v PubMed

Klerke A.; Christensen C. H.; Nørskov J. K.; Vegge T. Ammonia for Hydrogen Storage: Challenges and Opportunities. J. Mater. Chem. 2008, 18, 2304–2310. 10.1039/B720020J. DOI

Li J.; Li H.; Zhan G.; Zhang L. Solar Water Splitting and Nitrogen Fixation with Layered Bismuth Oxyhalides. Acc. Chem. Res. 2017, 50, 112–121. 10.1021/acs.accounts.6b00523. PubMed DOI

Chen J. G.; Crooks R. M.; Seefeldt L. C.; Bren K. L.; Bullock R. M.; Darensbourg M. Y.; Holland P. L.; Hoffman B.; Janik M. J.; Jones A. K.; Kanatzidis M. G.; King P.; Lancaster K. M.; Lymar S. V.; Pfromm P.; Schneider W. F.; Schrock R. R. Beyond Fossil Fuel–Driven Nitrogen Transformations. Science 2018, 360, eaar661110.1126/science.aar6611. PubMed DOI PMC

Jackson R. B.; Canadell J. G.; Le Quéré C.; Andrew R. M.; Korsbakken J. I.; Peters G. P.; Nakicenovic N. Reaching Peak Emissions. Nat. Clim. Change 2016, 6, 7–10. 10.1038/nclimate2892. DOI

van der Ham C. J. M.; van der Koper M. T. M.; Hetterscheid D. G. H. Challenges in Reduction of Dinitrogen by Proton and Electron Transfer. Chem. Soc. Rev. 2014, 43, 5183–5191. 10.1039/C4CS00085D. PubMed DOI

Wijayanta A. T.; Aziz M. Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis. Energy 2019, 174, 331–338. 10.1016/j.energy.2019.02.190. DOI

Gorbanev Y.; Vervloessem E.; Nikiforov A.; Bogaerts A. Nitrogen Fixation with Water Vapor by Nonequilibrium Plasma: Toward Sustainable Ammonia Production. ACS Sustainable Chem. Eng. 2020, 8, 2996–3004. 10.1021/acssuschemeng.9b07849. DOI

Koh S.; Choi Y.; Lee I.; Kim G.-M.; Kim J.; Park Y.-S.; Lee S. Y.; Lee D. C. Light-Driven Ammonia Production by Azotobacter Vinelandii Cultured in Medium Containing Colloidal Quantum Dots. J. Am. Chem. Soc. 2022, 144, 10798–10808. 10.1021/jacs.2c01886. PubMed DOI

Tian Y.; Mao Z.; Wang L.; Liang J. Green Chemistry: Advanced Electrocatalysts and System Design for Ammonia Oxidation. Small Struct. 2023, 4, 220026610.1002/sstr.202200266. DOI

Wu T.; Fan W.; Zhang Y.; Zhang F. Electrochemical Synthesis of Ammonia: Progress and Challenges. Mater. Today Phys. 2021, 16, 10031010.1016/j.mtphys.2020.100310. DOI

Zhu X.; Mou S.; Peng Q.; Liu Q.; Luo Y.; Chen G.; Gao S.; Sun X. Aqueous Electrocatalytic N2 Reduction for Ambient NH3 Synthesis: Recent Advances in Catalyst Development and Performance Improvement. J. Mater. Chem. A 2020, 8, 1545–1556. 10.1039/C9TA13044F. DOI

Seh Z. W.; Kibsgaard J.; Dickens C. F.; Chorkendorff I.; Nørskov J. K.; Jaramillo T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad499810.1126/science.aad4998. PubMed DOI

Cao N.; Zheng G. Aqueous Electrocatalytic N2 Reduction under Ambient Conditions. Nano Res. 2018, 11, 2992–3008. 10.1007/s12274-018-1987-y. DOI

Chu K.; Liu Y.; Li Y.; Wang J.; Zhang H. Electronically Coupled SnO2 Quantum Dots and Graphene for Efficient Nitrogen Reduction Reaction. ACS Appl. Mater. Interfaces 2019, 11, 31806–31815. 10.1021/acsami.9b08055. PubMed DOI

Chu K.; Liu Y.; Li Y.; Zhang H.; Tian Y. Efficient Electrocatalytic N2 Reduction on CoO Quantum Dots. J. Mater. Chem. A 2019, 7, 4389–4394. 10.1039/C9TA00016J. DOI

Yu X.; Han P.; Wei Z.; Huang L.; Gu Z.; Peng S.; Ma J.; Zheng G. Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule 2018, 2, 1610–1622. 10.1016/j.joule.2018.06.007. DOI

Yao D.; Tang C.; Li L.; Xia B.; Vasileff A.; Jin H.; Zhang Y.; Qiao S.-Z. In Situ Fragmented Bismuth Nanoparticles for Electrocatalytic Nitrogen Reduction. Adv. Energy Mater. 2020, 10, 200128910.1002/aenm.202001289. DOI

Li H.; Wang L.; Li N.; Feng J.; Hou F.; Wang S.; Liang J. Ion-Exchange-Induced Bi and K Dual-Doping of TiOx in Molten Salts for High-Performance Electrochemical Nitrogen Reduction. J. Energy Chem. 2022, 69, 26–34. 10.1016/j.jechem.2022.01.002. DOI

Li N.; Tong Y.; Li H.; Wang L.; Hou F.; Dou S. X.; Liang J. Boron-Doped Carbon Nanospheres for Efficient and Stable Electrochemical Nitrogen Reduction. Carbon 2021, 182, 233–241. 10.1016/j.carbon.2021.05.060. DOI

Zheng J.; Lyu Y.; Qiao M.; Wang R.; Zhou Y.; Li H.; Chen C.; Li Y.; Zhou H.; Jiang S. P.; Wang S. Photoelectrochemical Synthesis of Ammonia on the Aerophilic-Hydrophilic Heterostructure with 37.8% Efficiency. Chem 2019, 5, 617–633. 10.1016/j.chempr.2018.12.003. DOI

Zabelina A.; Zabelin D.; Miliutina E.; Lancok J.; Svorcik V.; Chertopalov S.; Lyutakov O. Surface Plasmon-Polariton Triggering of Ti3C2Tx MXene Catalytic Activity for Hydrogen Evolution Reaction Enhancement. J. Mater. Chem. A 2021, 9, 17770–17779. 10.1039/D1TA04505A. DOI

Bai Y.; Bai H.; Fang Z.; Li X.; Fan W.; Shi W. Understanding the Z-Scheme Heterojunction of BiVO4/PANI for Photoelectrochemical Nitrogen Reduction. Chem. Commun. 2021, 57, 10568–10571. 10.1039/D1CC03687D. PubMed DOI

Yu M. S.; Jesudass S. C.; Surendran S.; Kim J. Y.; Sim U.; Han M.-K. Synergistic Interaction of MoS2 Nanoflakes on La2Zr2O7 Nanofibers for Improving Photoelectrochemical Nitrogen Reduction. ACS Appl. Mater. Interfaces 2022, 14, 31889–31899. 10.1021/acsami.2c05653. PubMed DOI

Zabelin D.; Zabelina A.; Miliutina E.; Trelin A.; Elashnikov R.; Nazarov D.; Maximov M.; Kalachyova Y.; Sajdl P.; Lancok J.; Vondracek M.; Svorcik V.; Lyutakov O. Design of Hybrid Au Grating/TiO2 Structure for NIR Enhanced Photo-Electrochemical Water Splitting. J. Chem. Eng. 2022, 443, 13644010.1016/j.cej.2022.136440. DOI

Hu Y.; Zhao Z. L.; Ahmad R.; Harb M.; Cavallo L.; Azofra L. M.; Jiang S. P.; Zhang X. A Bifunctional Catalyst Based on a Carbon Quantum Dots/Mesoporous SrTiO3 Heterostructure for Cascade Photoelectrochemical Nitrogen Reduction. J. Mater. Chem. A 2022, 10, 12713–12721. 10.1039/D2TA02187K. DOI

Peramaiah K.; Ramalingam V.; Fu H.-C.; Alsabban M. M.; Ahmad R.; Cavallo L.; Tung V.; Huang K.-W.; He J.-H. Optically and Electrocatalytically Decoupled Si Photocathodes with a Porous Carbon Nitride Catalyst for Nitrogen Reduction with Over 61.8% Faradaic Efficiency. Adv. Mater. 2021, 33, 210081210.1002/adma.202100812. PubMed DOI

Zheng J.; Jiang L.; Lyu Y.; Jiang S. P.; Wang S. Green Synthesis of Nitrogen-to-Ammonia Fixation: Past, Present, and Future. Energy Environ. Mater. 2022, 5, 452–457. 10.1002/eem2.12192. DOI

Nazemi M.; El-Sayed M. A. Managing the Nitrogen Cycle via Plasmonic (Photo)Electrocatalysis: Toward Circular Economy. Acc. Chem. Res. 2021, 54, 4294–4304. 10.1021/acs.accounts.1c00446. PubMed DOI

Ali M.; Zhou F.; Chen K.; Kotzur C.; Xiao C.; Bourgeois L.; Zhang X.; MacFarlane D. R. Nanostructured Photoelectrochemical Solar Cell for Nitrogen Reduction Using Plasmon-Enhanced Black Silicon. Nat. Commun. 2016, 7, 1133510.1038/ncomms11335. PubMed DOI PMC

Li C.; Wang T.; Zhao Z.-J.; Yang W.; Li J.-F.; Li A.; Yang Z.; Ozin G. A.; Gong J. Promoted Fixation of Molecular Nitrogen with Surface Oxygen Vacancies on Plasmon-Enhanced TiO2 Photoelectrodes. Angew. Chem., Int. Ed. 2018, 57, 5278–5282. 10.1002/anie.201713229. PubMed DOI

Oshikiri T.; Ueno K.; Misawa H. Selective Dinitrogen Conversion to Ammonia Using Water and Visible Light through Plasmon-Induced Charge Separation. Angew. Chem., Int. Ed. 2016, 55, 3942–3946. 10.1002/anie.201511189. PubMed DOI

Zabelina A.; Miliutina E.; Zabelin D.; Burtsev V.; Buravets V.; Elashnikov R.; Neubertova V.; Št’astný M.; Popelková D.; Lancok J.; Chertopalov S.; Paidar M.; Trelin A.; Michalcová A.; Švorčík V.; Lyutakov O. Plasmon Coupling inside 2D-like TiB2 Flakes for Water Splitting Half Reactions Enhancement in Acidic and Alkaline Conditions. Chem. Eng. J. 2023, 454, 14044110.1016/j.cej.2022.140441. DOI

Li S.; Wang Y.; Liang J.; Xu T.; Ma D.; Liu Q.; Li T.; Xu S.; Chen G.; Asiri A. M.; Luo Y.; Wu Q.; Sun X. TiB2 Thin Film Enabled Efficient NH3 Electrosynthesis at Ambient Conditions. Mater. Today Phys. 2021, 18, 10039610.1016/j.mtphys.2021.100396. DOI

Hutter J.; Iannuzzi M.; Schiffmann F.; VandeVondele J. Cp2k: Atomistic Simulations of Condensed Matter Systems. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2014, 4, 15–25. 10.1002/wcms.1159. DOI

Wang W.; Zhang H.; Zhang S.; Liu Y.; Wang G.; Sun C.; Zhao H. Potassium-Ion-Assisted Regeneration of Active Cyano Groups in Carbon Nitride Nanoribbons: Visible-Light-Driven Photocatalytic Nitrogen Reduction. Angew. Chem., Int. Ed. 2019, 58, 16644–16650. 10.1002/anie.201908640. PubMed DOI

Li J.; Chen S.; Quan F.; Zhan G.; Jia F.; Ai Z.; Zhang L. Accelerated Dinitrogen Electroreduction to Ammonia via Interfacial Polarization Triggered by Single-Atom Protrusions. Chem 2020, 6, 885–901. 10.1016/j.chempr.2020.01.013. DOI

Liu S.; Qian T.; Wang M.; Ji H.; Shen X.; Wang C.; Yan C. Proton-Filtering Covalent Organic Frameworks with Superior Nitrogen Penetration Flux Promote Ambient Ammonia Synthesis. Nat. Catal. 2021, 4, 322–331. 10.1038/s41929-021-00599-w. DOI

Wang M.; Liu S.; Ji H.; Liu J.; Yan C.; Qian T. Unveiling the Essential Nature of Lewis Basicity in Thermodynamically and Dynamically Promoted Nitrogen Fixation. Adv. Funct. Mater. 2020, 30, 200124410.1002/adfm.202001244. DOI

Cai X.; Fu C.; Iriawan H.; Yang F.; Wu A.; Luo L.; Shen S.; Wei G.; Shao-Horn Y.; Zhang J. Lithium-Mediated Electrochemical Nitrogen Reduction: Mechanistic Insights to Enhance Performance. iScience 2021, 24, 10310510.1016/j.isci.2021.103105. PubMed DOI PMC

Iriawan H.; Andersen S. Z.; Zhang X.; Comer B. M.; Barrio J.; Chen P.; Medford A. J.; Stephens I. E. L.; Chorkendorff I.; Shao-Horn Y. Methods for Nitrogen Activation by Reduction and Oxidation. Nat. Rev. Methods Primers 2021, 1, 1–26. 10.1038/s43586-021-00053-y. DOI

Dabundo R.; Lehmann M. F.; Treibergs L.; Tobias C. R.; Altabet M. A.; Moisander P. H.; Granger J. The Contamination of Commercial 15N2 Gas Stocks with 15N–Labeled Nitrate and Ammonium and Consequences for Nitrogen Fixation Measurements. PLoS One 2014, 9, e11033510.1371/journal.pone.0110335. PubMed DOI PMC

Andersen S. Z.; Čolić V.; Yang S.; Schwalbe J. A.; Nielander A. C.; McEnaney J. M.; Enemark-Rasmussen K.; Baker J. G.; Singh A. R.; Rohr B. A.; Statt M. J.; Blair S. J.; Mezzavilla S.; Kibsgaard J.; Vesborg P. C. K.; Cargnello M.; Bent S. F.; Jaramillo T. F.; Stephens I. E. L.; Nørskov J. K.; Chorkendorff I. A Rigorous Electrochemical Ammonia Synthesis Protocol with Quantitative Isotope Measurements. Nature 2019, 570, 504–508. 10.1038/s41586-019-1260-x. PubMed DOI

Bi K.; Wang Y.; Zhao D.-M.; Wang J.-Z.; Bao D.; Shi M.-M. Charge Carrier Dynamics Investigation of Cu2S–In2S3 Heterostructures for the Conversion of Dinitrogen to Ammonia via Photo-Electrocatalytic Reduction. J. Mater. Chem. A 2021, 9, 10497–10507. 10.1039/D1TA00581B. DOI

Zheng J.; Lyu Y.; Veder J.-P.; Johannessen B.; Wang R.; Marco R. D.; Huang A.; Jiang S. P.; Wang S. Electrochemistry-Assisted Photoelectrochemical Reduction of Nitrogen to Ammonia. J. Phys. Chem. C 2021, 125, 23041–23049. 10.1021/acs.jpcc.1c07278. DOI

Jang Y. J.; Lindberg A. E.; Lumley M. A.; Choi K.-S. Photoelectrochemical Nitrogen Reduction to Ammonia on Cupric and Cuprous Oxide Photocathodes. ACS Energy Lett. 2020, 5, 1834–1839. 10.1021/acsenergylett.0c00711. DOI

Sultana S.; Paramanik L.; Mansingh S.; Parida K. Robust Photoelectrochemical Route for the Ambient Fixation of Dinitrogen into Ammonia over a Nanojunction Assembled from Ceria and an Iron Boride/Phosphide Cocatalyst. Inorg. Chem. 2022, 61, 131–140. 10.1021/acs.inorgchem.1c02504. PubMed DOI

Liang W.; Qin W.; Li D.; Wang Y.; Guo W.; Bi Y.; Sun Y.; Jiang L. Localized Surface Plasmon Resonance Enhanced Electrochemical Nitrogen Reduction Reaction. Appl. Catal., B 2022, 301, 12080810.1016/j.apcatb.2021.120808. DOI

Xu F.; Wu F.; Zhu K.; Fang Z.; Jia D.; Wang Y.; Jia G.; Low J.; Ye W.; Sun Z.; Gao P.; Xiong Y. Boron Doping and High Curvature in Bi Nanorolls for Promoting Photoelectrochemical Nitrogen Fixation. Appl. Catal., B 2021, 284, 11968910.1016/j.apcatb.2020.119689. DOI

Li M.; Lu Q.; Liu M.; Yin P.; Wu C.; Li H.; Zhang Y.; Yao S. Photoinduced Charge Separation via the Double-Electron Transfer Mechanism in Nitrogen Vacancies g-C3N5/BiOBr for the Photoelectrochemical Nitrogen Reduction. ACS Appl. Mater. Interfaces 2020, 12, 38266–38274. 10.1021/acsami.0c11894. PubMed DOI

Wang Y.; Jia K.; Pan Q.; Xu Y.; Liu Q.; Cui G.; Guo X.; Sun X. Boron-Doped TiO2 for Efficient Electrocatalytic N2 Fixation to NH3 at Ambient Conditions. ACS Sustainable Chem. Eng. 2019, 7, 117–122. 10.1021/acssuschemeng.8b05332. DOI

Gao N.; Yang H.; Dong D.; Dou D.; Liu Y.; Zhou W.; Gao F.; Nan C.; Liang Z.; Yang D. Bi2S3 Quantum Dots in Situ Grown on MoS2 Nanoflowers: An Efficient Electron-Rich Interface for Photoelectrochemical N2 Reduction. J. Colloid Interface Sci. 2022, 611, 294–305. 10.1016/j.jcis.2021.12.096. PubMed DOI

Zhang J.; Zhang G.; Lan H.; Liu H.; Qu J. Sustainable Nitrogen Fixation over Ru Single Atoms Decorated Cu2O Using Electrons Produced from Photoelectrocatalytic Organics Degradation. J. Chem. Eng. 2022, 428, 13037310.1016/j.cej.2021.130373. DOI

Zhu X.; Liu Z.; Liu Q.; Luo Y.; Shi X.; M Asiri A.; Wu Y.; Sun X. Efficient and Durable N2 Reduction Electrocatalysis under Ambient Conditions: β-FeOOH Nanorods as a Non-Noble-Metal Catalyst. Chem. Commun. 2018, 54, 11332–11335. 10.1039/C8CC06366D. PubMed DOI

Liu D.; Wang J.; Bian S.; Liu Q.; Gao Y.; Wang X.; Chu P. K.; Yu X.-F. Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Adv. Funct. Mater. 2020, 30, 200273110.1002/adfm.202002731. DOI

Mushtaq M. A.; Kumar A.; Yasin G.; Arif M.; Tabish M.; Ibraheem S.; Cai X.; Ye W.; Fang X.; Saad A.; Zhao J.; Ji S.; Yan D. 3D interconnected porous Mo-doped WO3@CdS hierarchical hollow heterostructures for efficient photoelectrochemical nitrogen reduction to ammonia. Appl. Catal., B 2022, 317, 12171110.1016/j.apcatb.2022.121711. DOI

Hu X.; Guo S.; Zhang S.; Guo X.; Li Y.; Huang S.; Zhang K.; Zhu J. Two-Dimensional Transition Metal Diborides: Promising Dirac Electrocatalysts with Large Reaction Regions toward Efficient N2 Fixation. J. Mater. Chem. A 2019, 7, 25887–25893. 10.1039/C9TA08820B. DOI

Peterson A. A.; Abild-Pedersen F.; Studt F.; Rossmeisl J.; Nørskov J. K. How Copper Catalyzes the Electroreduction of Carbon Dioxide into Hydrocarbon Fuels. Energy Environ. Sci. 2010, 3, 1311–1315. 10.1039/C0EE00071J. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...