-
Something wrong with this record ?
Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization
J. Ivica, N. Kejzar, H. Ho, I. Stockwell, V. Kuchtiak, AM. Scrutton, T. Nakagawa, IH. Greger
Language English Country United States
Document type Journal Article
Grant support
S10 OD032234
NIH HHS - United States
Wellcome Trust - United Kingdom
S10 OD030292
NIH HHS - United States
R01 MH123474
NIMH NIH HHS - United States
R56 MH123474
NIMH NIH HHS - United States
NLK
ProQuest Central
from 2004-01-01 to 1 year ago
Health & Medicine (ProQuest)
from 2004-01-01 to 1 year ago
- MeSH
- Receptors, AMPA * metabolism chemistry MeSH
- Cryoelectron Microscopy * MeSH
- Hippocampus metabolism MeSH
- Kinetics MeSH
- Hydrogen-Ion Concentration MeSH
- Protein Conformation MeSH
- Humans MeSH
- Mice MeSH
- Synaptic Transmission MeSH
- Protein Domains MeSH
- Protons * MeSH
- Molecular Dynamics Simulation * MeSH
- Synapses * metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission.
Center for Structural Biology Vanderbilt University School of Medicine Nashville TN USA
Department of Physiology Development and Neuroscience University of Cambridge Cambridge UK
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Neurobiology Division Medical Research Council Laboratory of Molecular Biology Cambridge UK
Vanderbilt Brain Institute Vanderbilt University School of Medicine Nashville TN USA
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25004033
- 003
- CZ-PrNML
- 005
- 20250206105054.0
- 007
- ta
- 008
- 250121s2024 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41594-024-01369-5 $2 doi
- 035 __
- $a (PubMed)39138332
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Ivica, Josip $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- 245 10
- $a Proton-triggered rearrangement of the AMPA receptor N-terminal domains impacts receptor kinetics and synaptic localization / $c J. Ivica, N. Kejzar, H. Ho, I. Stockwell, V. Kuchtiak, AM. Scrutton, T. Nakagawa, IH. Greger
- 520 9_
- $a AMPA glutamate receptors (AMPARs) are ion channel tetramers that mediate the majority of fast excitatory synaptic transmission. They are composed of four subunits (GluA1-GluA4); the GluA2 subunit dominates AMPAR function throughout the forebrain. Its extracellular N-terminal domain (NTD) determines receptor localization at the synapse, ensuring reliable synaptic transmission and plasticity. This synaptic anchoring function requires a compact NTD tier, stabilized by a GluA2-specific NTD interface. Here we show that low pH conditions, which accompany synaptic activity, rupture this interface. All-atom molecular dynamics simulations reveal that protonation of an interfacial histidine residue (H208) centrally contributes to NTD rearrangement. Moreover, in stark contrast to their canonical compact arrangement at neutral pH, GluA2 cryo-electron microscopy structures exhibit a wide spectrum of NTD conformations under acidic conditions. We show that the consequences of this pH-dependent conformational control are twofold: rupture of the NTD tier slows recovery from desensitized states and increases receptor mobility at mouse hippocampal synapses. Therefore, a proton-triggered NTD switch will shape both AMPAR location and kinetics, thereby impacting synaptic signal transmission.
- 650 12
- $a AMPA receptory $x metabolismus $x chemie $7 D018091
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a synapse $x metabolismus $7 D013569
- 650 12
- $a protony $7 D011522
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a koncentrace vodíkových iontů $7 D006863
- 650 _2
- $a myši $7 D051379
- 650 12
- $a elektronová kryomikroskopie $7 D020285
- 650 _2
- $a kinetika $7 D007700
- 650 _2
- $a proteinové domény $7 D000072417
- 650 _2
- $a hipokampus $x metabolismus $7 D006624
- 650 _2
- $a konformace proteinů $7 D011487
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nervový přenos $7 D009435
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kejzar, Nejc $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK $u Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- 700 1_
- $a Ho, Hinze $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK $u Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- 700 1_
- $a Stockwell, Imogen $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- 700 1_
- $a Kuchtiak, Viktor $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK $u Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
- 700 1_
- $a Scrutton, Alexander M $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
- 700 1_
- $a Nakagawa, Terunaga $u Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA. terunaga.nakagawa@Vanderbilt.Edu $u Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, USA. terunaga.nakagawa@Vanderbilt.Edu $u Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA. terunaga.nakagawa@Vanderbilt.Edu
- 700 1_
- $a Greger, Ingo H $u Neurobiology Division, Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK. ig@mrc-lmb.cam.ac.uk $1 https://orcid.org/0000000272912581
- 773 0_
- $w MED00007513 $t Nature structural & molecular biology $x 1545-9985 $g Roč. 31, č. 10 (2024), s. 1601-1613
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39138332 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250121 $b ABA008
- 991 __
- $a 20250206105049 $b ABA008
- 999 __
- $a ok $b bmc $g 2263650 $s 1240040
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 31 $c 10 $d 1601-1613 $e 20240813 $i 1545-9985 $m Nature structural & molecular biology $n Nat Struct Mol Biol $x MED00007513
- GRA __
- $a S10 OD032234 $p NIH HHS $2 United States
- GRA __
- $p Wellcome Trust $2 United Kingdom
- GRA __
- $a S10 OD030292 $p NIH HHS $2 United States
- GRA __
- $a R01 MH123474 $p NIMH NIH HHS $2 United States
- GRA __
- $a R56 MH123474 $p NIMH NIH HHS $2 United States
- LZP __
- $a Pubmed-20250121