Influence of Selected Factors of Vibratory Work Hardening Machining on the Properties of CuZn30 Brass
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
39685349
PubMed Central
PMC11643806
DOI
10.3390/ma17235913
PII: ma17235913
Knihovny.cz E-zdroje
- Klíčová slova
- brass, crushing, recrystallization, vibratory machining, work hardening,
- Publikační typ
- časopisecké články MeSH
The purpose of this study was to determine the effect of selected vibratory strengthening machining factors on the properties of CuZn30 brass. Vibratory strengthening machining was carried out using metal media dedicated to polishing processes, which also contributed to strengthening the treated surfaces. The test samples were cut with an abrasive water jet and recrystallized to obtain a soft microstructure. An orthogonal, two-factor five-level plan was used for the study. The effect of vibration frequency and vibratory machining time on selected changes in parameters of the geometric structure of the surface and hardness of the surface layer was determined using Statistica software version 10 (64-bit). Higher vibration frequencies for vibratory machining increased the hardness of machined surfaces by as much as 50 HV0.02. The arithmetic mean deviation of the height of surface irregularities from the reference plane, Sa, decreases with increasing the time of vibratory machining. A value of Sa = 0.168 µm was obtained after 87 min of consolidation, compared to an initial surface of Sa = 0.65 µm.
Zobrazit více v PubMed
Woźniak K. Obróbka Powierzchni w Wygładzarkach Pojemnikowych. WNT; Warszawa, Polish: 2017. (In Polish)
Domblesky J., Evans R., Cariapa V. Material removal model for vibratory finishing. Int. J. Prod. Res. 2004;42:1029–1041. doi: 10.1080/00207540310001619641. DOI
Bankowski D., Spadlo S. Investigations of influence of vibration smoothing conditions of geometrical structure on machined surfaces; Proceedings of the 4th International Conference Recent Trends in Structural Materials; Pilsen, Czech Republic. 9–11 November 2016; DOI
Mediratta R., Ahluwalia K., Yeo S.H. State-of-the-art on vibratory finishing in the aviation industry: An industrial and academic perspective. Int. J. Adv. Manuf. Technol. 2016;85:415–429. doi: 10.1007/s00170-015-7942-0. DOI
Bańkowski D., Krajcarz D., Piotr Młynarczyk P. Deburring and Smoothing the Edges Using Vibro-abrasive Machining. Procedia Eng. 2017;192:28–33.
Bańkowski D., Spadło S. Influence of the smoothing conditions in vibro-abrasive for technically dry friction the parts made of steel X160CRMOV121; Proceedings of the 25th International Conference on Metallurgy and Materials METAL; Brno, Czech. 25–27 May 2016; pp. p 1019–1024.
Bańkowski D., Spadło S. The Influence of Abrasive Paste on the Effects of Vibratory Machining of Brass. Arch. Foundry Eng. 2019;4:5–10. doi: 10.24425/afe.2019.129622. DOI
Vibratory Machinig. [(accessed on 27 August 2024)]. Available online: https://pl.wikipedia.org/wiki/Obr%C3%B3bka_wibro%C5%9Bcierna.
Marciniak M., Stefko A., Szyrle W. Podstawy Obróbki w Wygładzarkach Pojemnikowych. WNT; Warszawa, Polish: 1893. (In Polish)
Bańkowski D., Spadło S. Influence of Cold Work on the Efficiency of Vibratory Machining. Arch. Foundry Eng. 2024;24:5–10. doi: 10.24425/afe.2024.149265. DOI
Stańczyk M., Figlus T. The Effect of Selected Parameters of Vibro-Abrasive Processing on the Surface Quality of Products Made of 6082 Aluminium Alloy. Materials. 2019;12:4117. doi: 10.3390/ma12244117. PubMed DOI PMC
Przybyłowicz K. Iron Alloys Engineering. Wyd. Politechniki Świętokrzyskiej w Kielcach; Kielce, Polish: 2008. (In Polish)
Trieu Q.-H., Luyen T.-T., Nguyen D.-T., Bui N.-T. A Study on Yield Criteria Influence on Anisotropic Behavior and Fracture Prediction in Deep Drawing SECC Steel Cylindrical Cups. Materials. 2024;17:2872. doi: 10.3390/ma17122872. PubMed DOI PMC
Ayadi S., Hadji A., Kaleli E.H. Effect of Heat Treatment Temperature on the Microstructure, Wear and Friction of Ni–Nb–V Alloyed Manganese Steel. Int. J. Met. 2024 doi: 10.1007/s40962-024-01363-z. DOI
Higuera-Cobos O.-F., Cely-Bautista M.-M., Muñoz-Bolaños J.-A. Effect of Heat Treatment on the Microstructural Heterogeneity and Abrasive Wear Behavior of ASTM A128 Grade C Steel. Materials. 2024;17:2884. doi: 10.3390/ma17122884. PubMed DOI PMC
Zhang W., Gao Z., Zhang H., Wei H., Chen Z., Xue W., Liu Z. The Influence of Heat Treatment on the Microstructure and Properties of a Cu-Bearing Ultra-Low Carbon Steel. Materials. 2024;17:3031. doi: 10.3390/ma17123031. PubMed DOI PMC
Lingnau L.A., Heermant J., Otto J.L., Donnerbauer K., Sauer L.M., Lücker L., Macias Barrientos M., Walther F. Separation of Damage Mechanisms in Full Forward Rod Extruded Case-Hardening Steel 16MnCrS5 Using 3D Image Segmentation. Materials. 2024;17:3023. doi: 10.3390/ma17123023. PubMed DOI PMC
Brass CuZn30. [(accessed on 27 August 2024)]. Available online: https://pl.int-metal.com/c26000-cuzn30-brass-strip.html.
Brass CuZn30. [(accessed on 27 August 2024)]. Available online: https://emetal.eu/mosiadz/mosiadz-ISO_-CuZn30-EN_-CW505L-DIN_-CuZn30-wnr_-2.0265-PN_-M70.
Brass CuZn30. [(accessed on 27 August 2024)]. Available online: http://metale-kolorowe.eu/mosiadz-cuzn30/
Broniewski W., Pełczyński T. O zgniocie, odpuszczaniu i wyżarzaniu mosiądzów. Prace Zakładu Metal. Politechniki Warsz. 1934;4:17–45.
Matuszak J., Zaleski K., Skoczylas A., Ciecieląg K., Kęcik K. Wpływ półlosowego i regularnego śrutowania na wybrane właściwości warstwy powierzchniowej stopu aluminium. Materials. 2021;14:7920.
Yang Z., Zheng J., Zhan K., Jiang C., Ji V. Surface characteristic and wear resistance of S960 high-strength steel after shot peening combing with ultrasonic sprayed graphene oxide coating. J. Mater. Res. Technol. 2022;18:978–989. doi: 10.1016/j.jmrt.2022.02.124. DOI
Kalisz J., Żak K., Wojciechowski S., Gupta M.K., Krolczyk G.M. Aspekty technologiczne i tribologiczne procesu frezowania-nagniatania powierzchni złożonych. Tribol. Int. 2021;155:106770. doi: 10.1016/j.triboint.2020.106770. DOI
Korzynski M., Dudek K., Korzynska K. Wpływ polerowania diamentem ślizgowym na warstwę powierzchniową trzonków zaworów i trwałość pary ciernej trzonek-uszczelka grafitowa. Appl. Sci. 2023;13:6392. doi: 10.3390/app13116392. DOI
Walczak M., Szala M., Okuniewski W. Ocena odporności korozyjnej i twardości stali X5CrNi18-10 poddanej obróbce strumieniowo-ściernej. Materials. 2022;15:9000. doi: 10.3390/ma15249000. PubMed DOI PMC
Bańkowski D., Młynarczyk P., Depczyński W., Bolanowski K. The Effect of Work Hardening on the Structure and Hardness of Hadfield Steel. Arch. Foundry Eng. 2024;24:14–20. doi: 10.24425/afe.2024.149246. DOI
Bechcinski G., Kepczak N., Pawlowski W., Stachurski W., Byczkowska P. Oblique Vibratory Surface Grinding—Experimental Study. Materials. 2023;16:5819. doi: 10.3390/ma16175819. PubMed DOI PMC
Liu Y.G., Li M.Q., Liu H.J. Nanostructure and surface roughness in the processed surface layer of Ti-6Al-4V via shot peening. Mater. Charact. 2017;123:83–90. doi: 10.1016/j.matchar.2016.11.020. DOI
Shi H., Liu D., Pan Y., Zhao W., Zhang X., Ma A., Liu B., Hu Y., Wang W. Effect of Shot Peening and Vibration Finishing on the Fatigue Behavior of TC17 Titanium Alloy at Room and High Temperature. Int. J. Fatigue. 2021;151:106391. doi: 10.1016/j.ijfatigue.2021.106391. DOI
Matuszak J. Analysis of Geometric Surface Structure and Surface Layer Microhardness of Ti6Al4V Titanium Alloy after Vibratory Shot Peening. Materials. 2023;16:6983. doi: 10.3390/ma16216983. PubMed DOI PMC
Radziejewska J., Marczak M., Maj P., Głowacki D. The Influence of Vibro-Assisted Abrasive Processing on the Surface Roughness and Sub-Surface Microstructure of Inconel 939 Specimen Made by LPBF. Materials. 2023;16:7429. doi: 10.3390/ma16237429. PubMed DOI PMC
Bańkowski D., Młynarczyk P., Hlaváčová I.M. Temperature Measurement during Abrasive Water Jet Machining (AWJM) Materials. 2022;15:7082. doi: 10.3390/ma15207082. PubMed DOI PMC
Konhol J. Wprowadzenie do Praktycznego Planowania Eksperymentu. StatSoft Polska; Kraków, Polish: 2008. pp. 43–58.
Niemczewska-Wójcik M., Mańkowska-Snopczyńska A., Piekoszewski W. Wpływ ukształtowania struktury geometrycznej powierzchni stopu tytanu na charakterystyki tribologiczne polimeru. Tribologia. 2014;6:97–112.
Janecki D., Stępień K., Adamczak S. Problems of measurement of barrel- and saddle-shaped elements using the radial method. Measurement. 2010;43:659–663. doi: 10.1016/j.measurement.2010.01.015. DOI
Bańkowski D., Młynarczyk P. Influence of EDM Process Parameters on the Surface Finish of Alnico Alloys. Materials. 2022;15:7277. doi: 10.3390/ma15207277. PubMed DOI PMC
Oniszczuk-Świercz D., Świercz R., Michna Š. Evaluation of Prediction Models of the Microwire EDM Process of Inconel 718 Using ANN and RSM Methods. Materials. 2022;15:8317. doi: 10.3390/ma15238317. PubMed DOI PMC
How Can You Produce High Quality Edge and Activity. [(accessed on 10 January 2022)]. Available online: https://www.linkedin.com/posts/davidson-finishing_how-can-you-produce-high-quality-edge-and-activity-6794385734783524864-IDyf.
Response_Surface_Methodology. [(accessed on 15 January 2024)]. Available online: https://charlesreid1.com/wiki/Response_Surface_Methodology.
Test Fishera-Snedecora. [(accessed on 15 January 2024)]. Available online: https://manuals.pqstat.pl/statpqpl:porown2grpl:parpl:snedecpl.
Test_Fishera. [(accessed on 15 March 2024)]. Available online: https://mfiles.pl/pl/index.php/Test_Fishera.
Veza I., Spraggon M., Fattah I.M.R., Idris M. Response surface methodology (RSM) for optimizing engine performance and emissions fueled with biofuel: Review of RSM for sustainability energy transition. Results Eng. 2023;18:101213. doi: 10.1016/j.rineng.2023.101213. DOI
Nowicki R., Oniszczuk-Świercz D., Świercz R. Experimental Investigation on the Impact of Graphite Electrodes Grain Size on Technological Parameters and Surface Texture of Hastelloy C-22 after Electrical Discharge Machining with Negative Polarity. Materials. 2024;17:2257. doi: 10.3390/ma17102257. PubMed DOI PMC
Wang J., Sánchez J.A., Izquierdo B., Ayesta I. Experimental and Numerical Study of Crater Volume in Wire Electrical Discharge Machining. Materials. 2020;13:577. doi: 10.3390/ma13030577. PubMed DOI PMC
Wojtatowicz T. Metody analizy danych doświadczalnych. Politechnika Łódzka; Łódź, Poland: 1998.
Dąbrowski L., Świercz R. Struktura metalograficzna powierzchni po obróbce elektroerozyjnej. Inżynieria Masz. 2011;16:16–23.
Polański Z. Metodyka badań doświadczalnych. Wydawnictwo Politechniki Krakowskiej; Kraków, Poland: 1981.
Dąbrowski L., Świercz R., Zwora J. Struktura geometryczna powierzchni po obróbce elektroerozyjnej elektrodą grafitową i miedzianą–porównanie. Inżynieria Masz. 2011;16:32–39.