• This record comes from PubMed

Evaluation of Prediction Models of the Microwire EDM Process of Inconel 718 Using ANN and RSM Methods

. 2022 Nov 23 ; 15 (23) : . [epub] 20221123

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Precise machining of micro parts from difficult-to-cut materials requires using advanced technology such as wire electrical discharge machining (WEDM). In order to enhance the productivity of micro WEDM, the key role is understanding the influence of process parameters on the surface topography and the material's removal rate (MRR). Furthermore, effective models which allow us to predict the influence of the parameters of micro-WEDM on the qualitative effects of the process are required. This paper influences the discharge energy, time interval, and wire speed on the surface topography's properties, namely Sa, Sk, Spk, Svk, and MRR, after micro-WEDM of Inconel 718 were described. Developed RSM and ANN model of the micro-WEDM process, showing that the discharge energy had the main influence (over 70%) on the surface topography's parameters. However, for MRR, the time interval was also significant. Furthermore, a reduction in wire speed can lead to a decrease in the cost process and have a positive influence on the environment and sustainability of the process. Evaluation of developed prediction models of micro-WEDM of Inconel 718 indicates that ANN had a lower value for the relative error compared with the RSM models and did not exceed 4%.

See more in PubMed

Wang J., Sánchez J.A., Izquierdo B., Ayesta I. Experimental and Numerical Study of Crater Volume in Wire Electrical Discharge Machining. Materials. 2020;13:577. doi: 10.3390/ma13030577. PubMed DOI PMC

Straka Ľ., Čorný I. Identification of geometric errors of circular profiles at WEDM caused by the wire tool electrode vibrations and their reduction with support of acoustic emission method. Eng. Fail. Anal. 2022;134:106040. doi: 10.1016/j.engfailanal.2022.106040. DOI

Ma J., Yin C., Li X., Han X., Wuyi M., Chen S., Cao Y., Liu K. Optimization of EDM process parameters based on variable-fidelity surrogate model. Int. J. Adv. Manuf. Technol. 2022;122:2031–2041. doi: 10.1007/s00170-022-09963-x. DOI

Qiu J. Fundamental research on machining performance of diamond wire sawing and diamond wire electrical discharge sawing quartz glass. Ceram. Int. 2022;48:24332–24345. doi: 10.1016/j.ceramint.2022.04.327. DOI

Oniszczuk-Swiercz D., Swiercz R., Chmielewski T., Salacinski T. Experimental investigation of influence WEDM parameters on surface roughness and flatness deviation. Metal. 2020;29:611–617. doi: 10.37904/metal.2020.3567. DOI

Kowalczyk M., Tomczyk K. Assessment of measurement uncertainties for energy signals stimulating the selected NiTi alloys during the wire electrical discharge machining. Precis. Eng. 2022;76:133–140. doi: 10.1016/j.precisioneng.2022.03.005. DOI

Straka L., Kuchta P. Dynamic Control of Discharge Energy during WEDM for the Purpose of Eliminating Vibrations of the Wire Tool Electrode. Manag. Syst. Prod. Eng. 2021;29:260–265. doi: 10.2478/mspe-2021-0032. DOI

Dodun O., Slătineanu L., Nagîț G., Hrițuc A., Mihalache A.M., Beșliu-Băncescu I. WEDM-Generated Slot Width Variation Modeling. Micromachines. 2022;13:1231. doi: 10.3390/mi13081231. PubMed DOI PMC

Chen X., Wang Z., Wang Y., Chi G. Investigation on MRR and Machining Gap of Micro Reciprocated Wire-EDM for SKD11. Int. J. Precis. Eng. Manuf. 2020;21:11–22. doi: 10.1007/s12541-019-00233-7. DOI

Ishfaq K., Ahmad N., Jawad M., Ali M.A., Al-Ahmari A.M. Evaluating Material’s Interaction in Wire Electrical Discharge Machining of Stainless Steel (304) for Simultaneous Optimization of Conflicting Responses. Materials. 2019;12:1940. doi: 10.3390/ma12121940. PubMed DOI PMC

Ilkhchi R.N., Akar S., Meshri H.A.M., Seyedzavvar M. Prediction of white layer formation in μ-WEDM process of NiTi shape memory superalloy: FEM with experimental verification. Int. J. Adv. Manuf. Technol. 2021;113:2805–2817. doi: 10.1007/s00170-021-06796-y. DOI

Vijayakumar R., Srirangarajalu N., Santhanakumar M., Adalarasan R. Investigation in µ-WEDM of Inconel 625 superalloy using RSM-CCD technique. Mater. Manuf. Process. 2022;37:1–12. doi: 10.1080/10426914.2022.2116035. DOI

Abhilash P.M., Chakradhar D. Effect of wire material and discharge energy on productivity and surface integrity of WEDM-processed Inconel 718. Adv. Mater. Process. Technol. 2022;0:1–22. doi: 10.1080/2374068X.2022.2079590. DOI

Sharma P., Chakradhar D., Narendranath S. Precision manufacturing of turbine wheel slots by trim-offset approach of WEDM. Precis. Eng. 2021;71:293–303. doi: 10.1016/j.precisioneng.2021.03.018. DOI

Burek J., Babiarz R., Buk J., Sułkowicz P., Krupa K. The Accuracy of Finishing WEDM of Inconel 718 Turbine Disc Fir Tree Slots. Materials. 2021;14:562. doi: 10.3390/ma14030562. PubMed DOI PMC

Ali M.Y., Banu A., Al Hazza M.H. Analysis of kerf accuracy in dry micro-wire EDM. Int. J. Adv. Manuf. Technol. 2020;111:597–608. doi: 10.1007/s00170-020-06095-y. DOI

Franczyk E., Machno M., Zębala W. Investigation and Optimization of the SLM and WEDM Processes’ Parameters for the AlSi10Mg-Sintered Part. Materials. 2021;14:410. doi: 10.3390/ma14020410. PubMed DOI PMC

Świercz R., Oniszczuk-Świercz D. Investigation of the Influence of Reduced Graphene Oxide Flakes in the Dielectric on Surface Characteristics and Material Removal Rate in EDM. Materials. 2019;16:943. doi: 10.3390/ma12060943. PubMed DOI PMC

Le V. An investigation on machined performance and recast layer properties of AISI H13 steel by Powder Mixed-EDM in fine-finishing process. Mater. Chem. Phys. 2021;276:125362. doi: 10.1016/j.matchemphys.2021.125362. DOI

Naik S., Das S.R., Dhupal D. Experimental Investigation, Predictive Modeling, Parametric Optimization and Cost Analysis in Electrical Discharge Machining of Al-SiC Metal Matrix Composite. Silicon. 2021;13:1017–1040. doi: 10.1007/s12633-020-00482-6. DOI

Nowicki R., Świercz R., Oniszczuk-Świercz D., Rozenek M. Experimental Investigation of Technological Indicators and Surface Roughness of Hastelloy C-22 after Electrical Discharge Machining Using POCO Graphite Electrodes. Materials. 2022;15:5631. doi: 10.3390/ma15165631. PubMed DOI PMC

Kundu P., Luo X., Qin Y., Cai Y., Liu Z. A machine learning-based framework for automatic identification of process and product fingerprints for smart manufacturing systems. J. Manuf. Process. 2022;73:128–138. doi: 10.1016/j.jmapro.2021.10.060. DOI

Machno M., Matras A., Szkoda M. Modelling and Analysis of the Effect of EDM-Drilling Parameters on the Machining Performance of Inconel 718 Using the RSM and ANNs Methods. Materials. 2022;15:1152. doi: 10.3390/ma15031152. PubMed DOI PMC

Thakur S.S., Pradhan S.K., Sehgal S., Saxena K.K. Experimental investigations on silicon carbide mixed electric discharge machining. Silicon. 2022:1–19. doi: 10.1007/s12633-022-02022-w. DOI

Van D.-N., Van B.-P., Huu P.-N. Application of Deng’s similarity-based analytic hierarchy process approach in parametric optimization of the electrical discharge machining process of SDK11 die steel. Trans. Can. Soc. Mech. Eng. 2020;44:294–310. doi: 10.1139/tcsme-2019-0132. DOI

Sivalingam V., Poogavanam G., Natarajan Y., Sun J. Optimization of atomized spray cutting fluid eco-friendly turning of Inconel 718 alloy using ARAS and CODAS methods. Int. J. Adv. Manuf. Technol. 2022;120:4551–4564. doi: 10.1007/s00170-022-09047-w. DOI

Vagaská A., Gombár M., Straka Ľ. Selected Mathematical Optimization Methods for Solving Problems of Engineering Practice. Energies. 2022;15:2205. doi: 10.3390/en15062205. DOI

Wang C., Yan X., Liao H., Chai L., Zou L., Huang Y. Process parameter optimization and anisotropy sensitivity study for abrasive belt grinding of nickel-based single-crystal superalloy. Arch. Civ. Mech. Eng. 2021;21:1–8. doi: 10.1007/s43452-021-00318-z. DOI

Gholizadeh H., Fathollahi-Fard A.M., Fazlollahtabar H., Charles V. Fuzzy data-driven scenario-based robust data envelopment analysis for prediction and optimisation of an electrical discharge machine’s parameters. Expert Syst. Appl. 2022;193:116419. doi: 10.1016/j.eswa.2021.116419. DOI

Sameer M.D., Sai Kartheek Reddy B., Amrutha N., Srishma K., Samantha K. Selection of Optimal EDM Process Parameters for Machining Maraging Steel Using Grey-Fuzzy Relational analysis—An Experimental Approach. In: Dave H.K., Dixit U.S., Nedelcu D., editors. Recent Advances in Manufacturing Processes and Systems. Springer Nature; Singapore: 2022. pp. 905–918.

Joshi A.Y., Joshi A.Y. Multi response optimization of PMEDM of Ti6Al4V using Al2O3 and SiC powder added de-ionized water as dielectric medium using grey relational analysis. SN Appl. Sci. 2021;3:718. doi: 10.1007/s42452-021-04712-3. DOI

Das P.P., Chakraborty S. Application of grey correlation-based EDAS method for parametric optimization of non-traditional machining processes. Sci. Iran. 2022;29:864–882. doi: 10.24200/sci.2020.53943.3499. DOI

Kouahla I., Yallese M.A., Belhadi S., Safi K., Nouioua M. Tool vibration, surface roughness, cutting power, and productivity assessment using RSM and GRA approach during machining of Inconel 718 with PVD-coated carbide tool. Int. J. Adv. Manuf. Technol. 2022;122:1835–1856. doi: 10.1007/s00170-022-09988-2. DOI

Jatakar K.H., Mulgund G., Patange A.D., Deshmukh B.B., Rambhada K.S. Multi-Point Face Milling Tool Condition Monitoring through Vibration Spectrogram and LSTM-Autoencoder. Int. J. Perform. Eng. 2022;18:570–579. doi: 10.23940/ijpe.22.08.p5.570579. DOI

Patil S.S., Pardeshi S.S., Pradhan N., Patange A.D. Cutting Tool Condition Monitoring using a Deep Learning-based Artificial Neural Network. Int. J. Perform. Eng. 2022;18:37–46.

Machno M., Franczyk E., Bogucki R., Matras A., Zębala W. A Comparative Study on the Structure and Quality of SLM and Cast AISI 316L Samples Subjected to WEDM Processing. Materials. 2022;15:701. doi: 10.3390/ma15030701. PubMed DOI PMC

Song L., Wang Y., Wang H., Sun S., Guo Q., Yang Y., Zhu X. A Triangulation-Based Method for Complex Mold Parts Surface Wear Assessment. IEEE Sens. J. 2022;22:15306–15315. doi: 10.1109/JSEN.2022.3188520. DOI

Maruda R.W., Wojciechowski S., Szczotkarz N., Legutko S., Mia M., Gupta M.K., Nieslony P., Krolczyk G.M. Metrological analysis of surface quality aspects in minimum quantity cooling lubrication. Meas. J. Int. Meas. Confed. 2021;171:108847. doi: 10.1016/j.measurement.2020.108847. DOI

Teimouri R., Grabowski M., Bogucki R., Ślusarczyk Ł., Skoczypiec S. Modeling of strengthening mechanisms of surface layers in burnishing process. Mater. Des. 2022;223:111114. doi: 10.1016/j.matdes.2022.111114. DOI

Żyra A., Bogucki R., Podolak-Lejtas A., Skoczypiec S. Research on influence of heat treatment scheme of Ti10V2Fe3Al alloy on technological surface integrity after electrodischarge machining. J. Manuf. Process. 2021;62:47–57. doi: 10.1016/j.jmapro.2020.12.038. DOI

Wróbel N., Rejek M., Królczyk J., Franka M., Gupta M.K., Śliwiński M., Królczyk G. Parametric Assessment of Surface Topography and Its Influence on Joint Tightness of Non-Separable Joints for Thin Wall Applications. Appl. Sci. Switz. 2022;12:8917. doi: 10.3390/app12178917. DOI

Krolczyk J.B., Maruda R.W., Krolczyk G.M., Wojciechowski S., Gupta M.K., Korkmaz M.E. Investigations on surface induced tribological characteristics in MQCL assisted machining of duplex stainless steel. J. Mater. Res. Technol. 2022;18:2754–2769. doi: 10.1016/j.jmrt.2022.03.167. DOI

Joshi A.Y., Banker V.J., Patel K.K., Patel K.S., Joshi D.M., Purohit M.R. Experimental Investigation in Wire Cut EDM of Inconel 718 Superalloy. In: Dave H.K., Dixit U.S., Nedelcu D., editors. Recent Advances in Manufacturing Processes and Systems. Springer Nature; Singapore: 2022. pp. 445–455.

Buk J. Surface Topography of Inconel 718 Alloy in Finishing WEDM. Adv. Sci. Technol. Res. J. 2022;16:47–61. doi: 10.12913/22998624/142962. DOI

Jithin S., Joshi S.S. Surface topography generation and simulation in electrical discharge texturing: A review. J. Mater. Process. Technol. 2021;298:117297. doi: 10.1016/j.jmatprotec.2021.117297. DOI

Basak A., Pramanik A., Prakash C., Shankar S., Debnath S. Understanding the Micro-Mechanical Behaviour of Recast Layer Formed during WEDM of Titanium Alloy. Metals. 2022;12:188. doi: 10.3390/met12020188. DOI

Zhang Y., Zhang G., Zhang Z., Zhang Y., Huang Y. Effect of assisted transverse magnetic field on distortion behavior of thin-walled components in WEDM process. Chin. J. Aeronaut. 2022;35:291–307. doi: 10.1016/j.cja.2020.10.034. DOI

Sun Y., Jin L., Liu M., Gong Y., Wen X., Yin G., Wen Q. A comprehensive review on fabrication of ultra small micro tools via electrical discharge machining-based methods. Int. J. Adv. Manuf. Technol. 2022;118:703–735. doi: 10.1007/s00170-021-07976-6. DOI

Welschof L., Schäfer N., Herrig T., Klink A., Bergs T. Effect of electrode material on removal efficiency regarding single discharges in wire EDM. Int. J. Adv. Manuf. Technol. 2022;120:1583–1589. doi: 10.1007/s00170-021-07858-x. DOI

Wu N.-J. Predicting the Compressive Strength of Concrete Using an RBF-ANN Model. Appl. Sci. 2021;11:6382. doi: 10.3390/app11146382. DOI

Shen Z., Yang H., Zhang S. Neural network approximation: Three hidden layers are enough. Neural Netw. 2021;141:160–173. doi: 10.1016/j.neunet.2021.04.011. PubMed DOI

Chu J., Liu X., Zhang Z., Zhang Y., He M. A novel method overcomeing overfitting of artificial neural network for accurate prediction: Application on thermophysical property of natural gas. Case Stud. Therm. Eng. 2021;28:101406. doi: 10.1016/j.csite.2021.101406. DOI

Al Bataineh A., Kaur D., Jalali S.M.J. Multi-Layer Perceptron Training Optimization Using Nature Inspired Computing. IEEE Access. 2022;10:36963–36977. doi: 10.1109/ACCESS.2022.3164669. DOI

Bajaj N.S., Patange A.D., Jegadeeshwaran R., Kulkarni K.A., Ghatpande R.S., Kapadnis A.M. A Bayesian Optimized Discriminant Analysis Model for Condition Monitoring of Face Milling Cutter Using Vibration Datasets. J. Nondestruct. Eval. Diagn. Progn. Eng. Syst. 2021;5:021002. doi: 10.1115/1.4051696. DOI

Zhao W. A Broyden–Fletcher–Goldfarb–Shanno algorithm for reliability-based design optimization. Appl. Math. Model. 2021;92:447–465. doi: 10.1016/j.apm.2020.11.012. DOI

Esteves P.M.B., Wiessner M., Costa J.V.M.R., Sikora M., Wegener K. WEDM single crater asymmetry. Int. J. Adv. Manuf. Technol. 2021;117:2421–2427. doi: 10.1007/s00170-021-07023-4. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...