Temperature Measurement during Abrasive Water Jet Machining (AWJM)
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36295153
PubMed Central
PMC9607222
DOI
10.3390/ma15207082
PII: ma15207082
Knihovny.cz E-resources
- Keywords
- XRD analysis, abrasive water jet, computed tomography inspection, cutting temperature, jet impact zone, temperature measurement,
- Publication type
- Journal Article MeSH
This study was undertaken to look for confirmation that heat transfer induced by abrasive water jet machining (AWJM) affects the microstructure of the material cut. The structure of S235JR carbon steel used in the experiments was reported to change locally in the jet impact zone due to the high concentration of energy generated during cutting with the abrasive water jet. It is assumed that some of the energy is transferred into the material in the form of heat. This is particularly true for materials of considerable thickness with a high thermal conductivity coefficient when cutting is performed at low speeds or with high abrasive consumption. The literature on the subject suggests that in AWJM there is little or no thermal energy effect on the microstructure of the material cut. The research described here involved the measurement of the cutting temperature with thermocouples placed at four different distances from the edge. The distances were measured using computed tomography inspection. The thermocouples used in the tests were capable of detecting temperatures of up to 100 °C. Locally, temperatures at the edge may reach much higher values. The results of the X-ray diffraction qualitative phase analysis reveal that locally the temperatures may be much higher than the eutectoid temperature. Phase changes occurred along the edge since austenite was observed. This suggests that the temperature in the jet impact zone was much higher than the eutectoid temperature. Optical microscopy was also employed to study the material microstructure. Finally, the material nanohardness was determined.
See more in PubMed
Hlaváčová I.M., Sadílek M., Váňová P., Szumilo Š., Tyč M. Influence of steel structure on machinability by abrasive water jet. Materials. 2020;13:4424. doi: 10.3390/ma13194424. PubMed DOI PMC
Chen X., Guan J., Deng S., Liu Q., Chen M. Features and mechanism of abrasive water jet cutting of Q345 steel. Int. J. Heat Technol. 2018;36:81–87. doi: 10.18280/ijht.360111. DOI
Bańkowski D., Spadło S. The use of abrasive water jet cutting to remove flash from castings. Arch. Foundry Eng. 2019;19:94–98. doi: 10.24425/afe.2019.129617. DOI
Hlaváč L.M., Bańkowski D., Krajcarz D., Štefek A., Tyč M., Młynarczyk P. Abrasive waterjet (AWJ) forces—Indicator of cutting system malfunction. Materials. 2021;14:1683. doi: 10.3390/ma14071683. PubMed DOI PMC
Zhao W., Guo C. Topography and microstructure of the cutting surface machined with abrasive waterjet. Int. J. Adv. Manuf. Technol. 2014;73:941–947. doi: 10.1007/s00170-014-5869-5. DOI
Liu X.C., Liang Z.W., Wen G.L., Yuan X.F. Water jet machining and research developments: A review. Int. J. Adv. Manuf. Technol. 2019;102:1257–1335. doi: 10.1007/s00170-018-3094-3. DOI
Spadło S., Krajcarz D., Młynarczyk P. Badania wpływu parametrów przecinania strugą wodno-ścierną stali niestopowej na strukturę geometryczną powierzchni. Mechanik. 2014;9:293–297.
Borkowski J., Sokołowska A. Termiczne Aspekty Obróbki Wysokociśnieniową Strugą Wodną o Różnej Strukturze i Zastosowaniu. Volume 36. XXVII Naukowa Szkoła Obróbki Ściernej; Koszalin-Sarbinowo, Poland: 2004. pp. 515–522.
Kovacevic R., Mohan R., Beardsley H. Monitoring of thermal energy distribution in abrasive waterjet cutting using infrared thermography. ASME J. Manuf. Sci. Eng. 1996;118:555–563. doi: 10.1115/1.2831067. DOI
Ishfaq K., Ahmed N., Rehman A.U., Hussain A., Umer U., Al-Zabidi A. Minimizing the micro-edge damage at each constituent layer of the clad composite during AWJM. Materials. 2020;13:2685. doi: 10.3390/ma13122685. PubMed DOI PMC
Folkes J. Water jet—An innovative tool for manufacturing. J. Mater. Process. Technol. 2009;209:6181–6189. doi: 10.1016/j.jmatprotec.2009.05.025. DOI
Kovacevic R., Hashish M., Mohan R., Ramulu M., Kim T.J., Geskin S. State of the art of research and development in abrasive water jet machining. J. Manuf. Sci. Eng. 1997;119:776–785. doi: 10.1115/1.2836824. DOI
Imanaka O., Shinohara K., Kawete Y. Experimental study of machining characteristics by liquid jets of high power density up to 108 Wcm−2; Proceedings of the First International Symposium on Jet Cutting Technology; Coventry, UK. 5–7 April 1972; Cranfield, UK: BHRA Group Publ.; 1972. pp. 22–35.
Neusen K.F., Schramm S.W. Jet induced target material temperature increases during jet cutting; Proceedings of the Fourth International Symposium on Jet Cutting Technology; Canterbury, UK. 12–14 April 1978; Cranfield, UK: BHRA Group Publ.; 1978. pp. 45–52.
Ansari A., Ohadi M., Hashish M. Effect of water jet pressure on thermal energy distribution in the workpiece during cutting with an abrasive-waterjet; Proceedings of the Symposium on Research and Technological Developments in Nontraditional Machining; Chicago, IL, USA. 27 November–2 December 1988; New York, NY, USA: American Society of Mechanical Engineers, Production Engineering Division; 1988. pp. 141–148.
Arola D., Fadale T., Ramulu M. Heat flux at the erosion boundary during abrasive waterjet machining of metals; Proceedings of the 13th Symposium on Jetting Technology; Sardinia, Italy. 29–31 October 1996; London, UK: BHRA Group Publ.; 1996. pp. 735–752.
Spadło S., Bańkowski D., Młynarczyk P., Hlaváčová I.M. Influence of Local Temperature Changes on the Material Microstructure in Abrasive Water Jet Machining (AWJM) Materials. 2021;14:5399. doi: 10.3390/ma14185399. PubMed DOI PMC
Ohadi M.M., Cheng K.L. Modeling of temperature distributions in the workpiece during abrasive water jet machining. J. Heat Transfer. 1993;115:446–452. doi: 10.1115/1.2910697. DOI
Arola D., Ramulu M. A residual stress analysis of metals machined with abrasive water jet; Proceedings of the 13th Symposium on Jetting Technology; Sardinia, Italy. 29–31 October 1996; London, UK: BHRA Group Publ.; 1996. pp. 269–290.
Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of material structure on forces measured during abrasive water jet (AWJ) machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC
Perec A. Research into the disintegration of abrasive materials in the abrasive water jet machining process. Materials. 2021;14:3940. doi: 10.3390/ma14143940. PubMed DOI PMC
Kaniowski R., Pastuszko R. Boiling of FC-72 on Surfaces with Open Copper Microchannel. Energies. 2021;14:7283. doi: 10.3390/en14217283. DOI
Kaniowski R., Pastuszko R. Pool Boiling of Water on Surfaces with Open Microchannels. Energies. 2021;14:3062. doi: 10.3390/en14113062. DOI
Przybyłowicz K. Metalozanawstwo. WNT; Warsaw, Poland: 2007.
Komponenty BUDOWLANE i elementy Budynku Opór Cieplny i Współczynnik Przenikania Ciepła Metoda Obliczania. PKN; Warszawa, Poland: 2007.
Lubuśka A. Influence RHT on the Structure of MA-Steels. TMS Publication; Pittsburgh, PA, USA: 1990. Recrystalization ’90.