Influence of Material Structure on Forces Measured during Abrasive Waterjet (AWJ) Machining
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2018/43; SP 2019/26; SP 2020/45
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32887394
PubMed Central
PMC7503880
DOI
10.3390/ma13173878
PII: ma13173878
Knihovny.cz E-zdroje
- Klíčová slova
- abrasive waterjet, cutting force, deformation force, machining, material properties, material structure, traverse speed,
- Publikační typ
- časopisecké články MeSH
Material structure is one of the important factors influencing abrasive waterjet (AWJ) machining efficiency and quality. The force measurements were performed on samples prepared from two very similar steels with different thicknesses and heat treatment. The samples were austenitized at 850 °C, quenched in polymer and tempered at various temperatures between 20 °C and 640 °C. The resulting states of material substantially differed in strength and hardness. Therefore, samples prepared from these material states are ideal for testing of material response to AWJ. The force measurements were chosen to test the possible influence of material structure on the material response to the AWJ impact. The results show that differences in material structure and respective material properties influence the limit traverse speed. The cutting to deformation force ratio seems to be a function of relative traverse speed independently on material structure.
Zobrazit více v PubMed
Natarajan Y., Murugesan P.K., Mohan M., Khan S.A.L.A. Abrasive Water Jet Machining process: A state of art of review. J. Manuf. Process. 2020;49:271–322. doi: 10.1016/j.jmapro.2019.11.030. DOI
Axinte D., Karpuschewski B., Kong M., Beaucamp A., Anwar S., Miller D., Petzel M. High Energy Fluid Jet Machining (HEFJet-Mach): From scientific and technological advances to niche industrial applications. CIRP Ann. 2014;63:751–771. doi: 10.1016/j.cirp.2014.05.001. DOI
Rabani A., Madariaga J., Bouvier C., Axinte D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016;22:99–107. doi: 10.1016/j.jmapro.2016.01.014. DOI
Zohourkari I., Zohoor M., Annoni M. Investigation of the Effects of Machining Parameters on Material Removal Rate in Abrasive Waterjet Turning. Adv. Mech. Eng. 2014;6 doi: 10.1155/2014/624203. DOI
Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI
Liang Z., Xie B., Liao S., Zhou J. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI
Loc P.H., Shiou F.-J. Abrasive Water Jet Polishing on Zr-Based Bulk Metallic Glass. Adv. Mater. Res. 2012;579:211–218. doi: 10.4028/www.scientific.net/AMR.579.211. DOI
Rabani A., Marinescu I., Axinte D. Acoustic emission energy transfer rate: A method for monitoring abrasive waterjet milling. Int. J. Mach. Tools Manuf. 2012;61:80–89. doi: 10.1016/j.ijmachtools.2012.05.012. DOI
Hreha P., Radvanská A., Knapčíková L., Krolczyk G.M., Legutko S., Krolczyk J.B., Hloch S., Monka P. Roughness Parameters Calculation By Means Of On-Line Vibration Monitoring Emerging From AWJ Interaction With Material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI
Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.
Fabian S., Salokyová Š. AWJ Cutting: The Technological Head Vibrations with Different Abrasive Mass Flow Rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI
Salokyová Š. Measurement and analysis of technological head vibrations in hydro-abrasive cutting technology. Acad. J. Manuf. Process. 2014;12:90–95.
Salokyová Š. Measurement and Analysis of Mass Flow and Feed Speed Impact on Technological Head Vibrations during Cutting Abrasion Resistant Steels with Abrasive Water Jet Technology. Key Eng. Mater. 2015;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI
Karas A., Ameur H., Mazouzi R., Kamla Y. Determination of the dynamic characteristics of the abrasive water jet for process manufacturing. Int. J. Adv. Manuf. Technol. 2020;110:101–112. doi: 10.1007/s00170-020-05845-2. DOI
Li Y., Lu Z., Li T., Li D., Lu J., Liaw P.K., Zou Y. Effects of Surface Severe Plastic Deformation on the Mechanical Behavior of 304 Stainless Steel. Meterials. 2020;10:831. doi: 10.3390/ma10070831. PubMed DOI PMC
Pahuja R., Ramulu M., Hashish M. Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks. Compos. Part B Eng. 2019;175:107134. doi: 10.1016/j.compositesb.2019.107134. DOI
Krolczyk G.M., Krolczyk J.B., Maruda R.W., Legutko S., Tomaszewski M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement. 2016;88:176–185. doi: 10.1016/j.measurement.2016.03.055. DOI
Li H.Y., Geskin E.S., Chen W.L. Investigation of forces exerted by an abrasive water jet on workpiece. In: Vijay M.M., Savanick G.A., editors. Proceedings of the 5th American Water Jet Conference, Toronto, ON, Canada, 29–31 August 1989. National Research Council of Canada; Ottawa, QC, Canada: U.S. Water Jet Technology Association; St. Louis, MO, USA: 1989. pp. 69–77.
Vala M. The measurement of the non-setting parameters of the high pressure water jets. In: Rakowski Z., editor. Geomechanics 93. Balkema; Rotterdam, The Netherlands: 1994. pp. 333–336.
Sitek L., Vala M., Vašek J. Investigation of high pressure water jet behaviour using jet/target interaction. In: Allen N.G., editor. Proceedings of the 12th International Conference on Jet Cutting Technology: Applications and Opportunities, Rouen, France, 25–27 October 1994. Mech. Eng. Pub. Ltd.; London, UK: 1994. pp. 59–66.
Hlaváčová I.M., Vondra A. Future in marine fire-fighting: High pressure water mist extinguisher with abrasive water jet cutting. Nase More. 2016;63:102–107. doi: 10.17818/NM/2016/SI5. DOI
Mádr V., Lupták M., Hlaváč L. Force Sensor and Method of Force Sensing in the Process of Abrasive Water Jet Cutting. Patent 2011-82. 2012 May 16
Hlaváč L., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2011;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI
Strnadel B., Hlaváč L., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI
Hlaváč L. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI
Hlaváč L., Hlaváčová I.M., Geryk V., Plančár Š. Investigation of the taper of kerfs cut in steels by AWJ. Int. J. Adv. Manuf. Technol. 2014;77:1811–1818. doi: 10.1007/s00170-014-6578-9. DOI
Hlaváč L., Hlaváčová I.M., Arleo F., Viganò F., Annoni M., Geryk V. Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precis. Eng. 2018;53:194–202. doi: 10.1016/j.precisioneng.2018.04.003. DOI
Hlaváčová I.M., Geryk V. Abrasives for water-jet cutting of high-strength and thick hard materials. Int. J. Adv. Manuf. Technol. 2016;90:1217–1224. doi: 10.1007/s00170-016-9462-y. DOI
Cahn R.W., Haasen P. Physical Metallurgy. North-Holland Physics Publishing; Amsterdam, The Netherlands: 1983. pp. 1376–1379.
Wilson D., Konnan Y. Work hardening in a steel containing a coarse dispersion of cementite particles. Acta Met. 1964;12:617–628. doi: 10.1016/0001-6160(64)90034-3. DOI
Temperature Measurement during Abrasive Water Jet Machining (AWJM)
Abrasive Waterjet (AWJ) Forces-Potential Indicators of Machining Quality
Abrasive Waterjet (AWJ) Forces-Indicator of Cutting System Malfunction
Special Issue: Mechanical Properties in Progressive Mechanically Processed Metallic Materials