Analysis of Several Physical Phenomena Measured on the Metallic Materials Cut by Abrasive Water Jets (AWJ)

. 2022 Oct 22 ; 15 (21) : . [epub] 20221022

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36363013

Grantová podpora
SP2022/25 Ministry of Education Youth and Sports

Cutting using an abrasive water jet is a complex process involving several physical phenomena. This research studies some of them, mostly the influence of selected variables on the measured forces and vibrations. The traverse speed represents one of the key parameters when cutting using the AWJ. In the presented research, a set of experiments was performed on twelve different metal samples, while the force sensor measured the exerted forces and accelerometers measured the vibrations. Ten different types of steel samples of the same dimensions were cut applying five different traverse speeds. The data obtained during these measurements show that an increase in the traverse speed leads to an increase in the measured forces and vibrations. An analogous experiment performed on bronze and duralumin samples of the same dimensions, having applied higher speeds to compensate for the difference in the material structure and properties, completes the presented data. The most important results of the research are that exerted forces in the z-axis are higher than those in the x-axis, whereas measured vibrations are higher in the x-axis. According to our research, the elemental structure, especially the carbide formation, affects the measured forces and vibrations substantially.

Zobrazit více v PubMed

Rabani A., Madariaga J., Bouvier C., Axinte D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016;22:99–107. doi: 10.1016/j.jmapro.2016.01.014. DOI

Zohourkari I., Zohoor M., Annoni M. Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv. Mech. Eng. 2014;6:624203. doi: 10.1155/2014/624203. DOI

Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI

Liang Z.W., Xie B.H., Liao S.P., Zhou J.H. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI

Loc P.H., Shiou F.J. Abrasive water jet polishing on Zr-based bulk metallic glass. In: Lin Z.C., Huang Y.M., Chen C.C.A., Chen L.K., editors. Advanced Materials Research. Volume 579. Trans Tech Publications Ltd.; Bäch, Switzerland: 2012. pp. 211–218. DOI

Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical and Experimental Modeling of Abrasive Water Jet Cutting of Ductile Materials. J. Mater. Process. Technol. 1998;73:189–199. doi: 10.1016/S0924-0136(97)00228-8. DOI

Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical Modeling of the Total Depth of Cut in Abrasive Water Jet Machining of Polycrystalline Brittle Materials. J. Mater. Process. Technol. 1998;73:206–212. doi: 10.1016/S0924-0136(97)00230-6. DOI

Hlaváč L.M., Krajcarz D., Hlaváčová I.M., Spadło S. Precision comparison of analytical and statistical-regression models for AWJ cutting. Precis. Eng. 2017;50:148–159. doi: 10.1016/j.precisioneng.2017.05.002. DOI

Fabian S., Salokyová Š. AWJ cutting: The technological head vibrations with different abrasive mass flow rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI

Salokyová Š. Measurement and analysis of technological head vibrations in hydro-abrasive cutting technology. Acad. J. Manuf. Eng. 2014;12:90–95.

Salokyová Š. Measurement and analysis of mass flow and feed speed impact on technological head vibrations during cutting abrasion resistant steels with abrasive water jet technology. Key Eng. Mater. 2016;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI

Hloch S., Ruggiero A. Online monitoring and analysis of hydroabrasive cutting by vibration. Adv. Mech. Eng. 2013:894561. doi: 10.1155/2013/894561. DOI

Hreha P., Hloch S. Potential use of vibration for metrology and detection of surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2013;7:135–151. doi: 10.1504/IJSURFSE.2013.053699. DOI

Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI

Monno M., Ravasi C. The effect of cutting head vibrations on the surfaces generated by waterjet cutting. Int. J. Mach. Tools Manuf. 2005;45:355–363. doi: 10.1016/j.ijmachtools.2004.07.010. DOI

Prislupčák M., Panda A., Jančík M., Pandová I., Orendáč P., Krenický T. Applied Mechanics and Materials. Volume 616. Trans Tech Publications, Ltd.; Wallerau, Switzerland: 2014. Diagnostic and Experimental Valuation on Progressive Machining Unit; pp. 191–199. DOI

Olejarova S., Krenicky T. Water Jet Technology: Experimental Verification of the Input Factors Variation Influence on the Generated Vibration Levels and Frequency Spectra. Materials. 2021;14:4281. doi: 10.3390/ma14154281. PubMed DOI PMC

Copertaro E., Perotti F., Annoni M. Operational vibration of a waterjet focuser as means for monitoring its wear progression. Int. J. Adv. Manuf. Technol. 2021;116:1937–1949. doi: 10.1007/s00170-021-07534-0. DOI

Copertaro C., Perotti F., Castellini P., Chiariotti P., Martarelli M., Annoni M. Focusing tube operational vibration as a means for monitoring the abrasive waterjet cutting capability. J. Manuf. Processes. 2020;59:1–10. doi: 10.1016/j.jmapro.2020.09.040. DOI

Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.

Li H.Y., Geskin E.S., Chen W.L. Investigation of forces exerted by an abrasive water jet on workpiece. In: Vijay M.M., Savanick G.A., editors. Proceedings of the 5th American Water Jet Conference; Toronto, ON, Canada. 29–31 August 1989; Ottawa, ON, Canada: St. Louis, MI, USA: National Research Council of Canada; U.S. Water Jet Technology Association; 1989. pp. 69–77.

Kliuev M., Pude F., Stirnimann J., Wegener K. Measurement of the effective waterjet diameter by means of force signals. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting—Water Jet 2019; Čeladná, Czech Republic. 20–22 November 2019; Cham, Switzerland: Springer; 2021. pp. 15–27. Lecture Notes in Mechanical Engineering. DOI

Orbanic H., Junkar M., Bajsic I., Lebar A. An instrument for measuring abrasive water jet diameter. Int. J. Mach. Tools Manu. 2009;49:843–849. doi: 10.1016/j.ijmachtools.2009.05.008. DOI

Foldyna J., Sitek L., Švehla B., Švehla T. Utilization of ultrasound to enhance high-speed water jet effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI

Hlaváč L.M., Annoni M.P.G., Hlaváčová I.M., Arleo F., Viganò F., Štefek A. Abrasive Waterjet (AWJ) Forces—Potential Indicators of Machining Quality. Materials. 2021;14:3309. doi: 10.3390/ma14123309. PubMed DOI PMC

Mádr V., Lupták M., Hlaváč L. Force Sensor and Method of Force Sensing in the Process of Abrasive Water Jet. Cutting. CZ 303189. Patent No. 2012 April 5;

Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of Material Structure on Forces Measured during Abrasive Waterjet (AWJ) Machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC

Hlaváč L.M., Bańkowski D., Krajcarz D., Štefek A., Tyč M., Młynarczyk P. Abrasive Waterjet (AWJ) Forces—Indicator of Cutting System Malfunction. Materials. 2021;14:1683. doi: 10.3390/ma14071683. PubMed DOI PMC

Shi L.P., Fang Y., Dai Q.W., Huang W., Wang X.L. Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Mater. Manuf. Process. 2018;33:1415–1421. doi: 10.1080/10426914.2017.1401723. DOI

Mehta K.M., Pandey S.K., Shaikh V.A. Unconventional Machining of ceramic matrix Composites—A review. Mater. Today Proc. 2021;46:7661–7669. doi: 10.1016/j.matpr.2021.01.961. DOI

Hou R.G., Wang T., Lv Z., Liu Y.Y. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass. Adv. Mater. Sci. Eng. 2018;2018:8904234. doi: 10.1155/2018/8904234. DOI

Singh D., Shukla R. Multi-objective optimization of selected non-traditional machining processes using NSGA-II. Decis. Sci. Lett. 2020;9:421–438. doi: 10.5267/j.dsl.2020.3.003. DOI

Debnath S., Kunar S., Anasane S.S., Bhattacharyya B. Non-traditional Micromachining Processes: Opportunities and Challenges. In: Kibria G., Bhattacharyya B., Davim J.P., editors. Non-Traditional Micromachining Processes: Fundamentals and Applications. Springer; Berlin/Heidelberg, Germany: 2017. pp. 1–59. (Book Series Materials Forming Machining and Tribology). DOI

Melentiev R., Fang F.Z. Recent advances and challenges of abrasive jet machining. CIRP J. Manuf. Sci. Technol. 2018;22:1–20. doi: 10.1016/j.cirpj.2018.06.001. DOI

Fürbacher I., Macek K., Steidl J. Lexikon Technických Materiálů se Zahraničními Ekvivalenty (Lexicon of Technical Materials with Foreign Equivalents) 1st ed. Praha; Dashöfer, Czech Republic: 1998. (In Czech)

Hlaváč L.M., Martinec P. Almandine garnets as abrasive material in high-energy waterjet—Physical modelling of interaction, experiment and prediction. In: Louis H., editor. Proceedings of the 14th International Conference on Jetting Technology; Brugge, Belgium. 21–23 September 1998; London, UK: Professional Engineering Publishing Ltd.; 1998. pp. 211–222.

Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI

Hlaváč L.M. Revised Model of Abrasive Water Jet Cutting for Industrial Use. Materials. 2021;14:4032. doi: 10.3390/ma14144032. PubMed DOI PMC

Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI

Pokusová M., Brúsilová A., Šooš L., Berta I. Abrasion Wear Behavior of High-chromium Cast Iron. Arch. Foundry Eng. 2016;16:69. doi: 10.1515/afe-2016-0028. DOI

Atabaki M.M., Jafari S., Abdollah-pour H. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel—A Comparison. J. Iron Steel Res. 2012;19:43–50. doi: 10.1016/S1006-706X(12)60086-7. DOI

Titov V.I., Tarasenko L.V., Utkina A.N. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium–vanadium steel. Phys. Met. Metallogr. 2017;118:81–86. doi: 10.1134/S0031918X17010070. DOI

Kagawa A., Kawashima S., Ohta Y. Wear Properties of (Fe, Cr)7C3 Carbide Bulk Alloys. Mater. Trans. Jim. 1992;33:1171–1177. doi: 10.2320/matertrans1989.33.1171. DOI

Chakraborty G., Kumar N., Das C.R., Albert S.K., Bhaduri A.K., Dash S., Tyagi A.K. Study on microstructure and wear properties of different nickel base hardfacing alloys deposited on austenitic stainless steel. Surf. Coat. Technol. 2014;244:180–188. doi: 10.1016/j.surfcoat.2014.02.013. DOI

Yao Z., Liu M., Hu H., Tian J., Xu G. Microstructure and Wear Properties of a Bainite/Martensite Multi-phase Wear Resistant Steel. ISIJ Int. 2021;61:434–441. doi: 10.2355/isijinternational.ISIJINT-2020-327. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...