Analysis of Several Physical Phenomena Measured on the Metallic Materials Cut by Abrasive Water Jets (AWJ)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2022/25
Ministry of Education Youth and Sports
PubMed
36363013
PubMed Central
PMC9657951
DOI
10.3390/ma15217423
PII: ma15217423
Knihovny.cz E-zdroje
- Klíčová slova
- abrasive water jet, cutting, forces, normal force, tangential force, traverse speed, vibrations,
- Publikační typ
- časopisecké články MeSH
Cutting using an abrasive water jet is a complex process involving several physical phenomena. This research studies some of them, mostly the influence of selected variables on the measured forces and vibrations. The traverse speed represents one of the key parameters when cutting using the AWJ. In the presented research, a set of experiments was performed on twelve different metal samples, while the force sensor measured the exerted forces and accelerometers measured the vibrations. Ten different types of steel samples of the same dimensions were cut applying five different traverse speeds. The data obtained during these measurements show that an increase in the traverse speed leads to an increase in the measured forces and vibrations. An analogous experiment performed on bronze and duralumin samples of the same dimensions, having applied higher speeds to compensate for the difference in the material structure and properties, completes the presented data. The most important results of the research are that exerted forces in the z-axis are higher than those in the x-axis, whereas measured vibrations are higher in the x-axis. According to our research, the elemental structure, especially the carbide formation, affects the measured forces and vibrations substantially.
Zobrazit více v PubMed
Rabani A., Madariaga J., Bouvier C., Axinte D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016;22:99–107. doi: 10.1016/j.jmapro.2016.01.014. DOI
Zohourkari I., Zohoor M., Annoni M. Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv. Mech. Eng. 2014;6:624203. doi: 10.1155/2014/624203. DOI
Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI
Liang Z.W., Xie B.H., Liao S.P., Zhou J.H. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI
Loc P.H., Shiou F.J. Abrasive water jet polishing on Zr-based bulk metallic glass. In: Lin Z.C., Huang Y.M., Chen C.C.A., Chen L.K., editors. Advanced Materials Research. Volume 579. Trans Tech Publications Ltd.; Bäch, Switzerland: 2012. pp. 211–218. DOI
Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical and Experimental Modeling of Abrasive Water Jet Cutting of Ductile Materials. J. Mater. Process. Technol. 1998;73:189–199. doi: 10.1016/S0924-0136(97)00228-8. DOI
Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical Modeling of the Total Depth of Cut in Abrasive Water Jet Machining of Polycrystalline Brittle Materials. J. Mater. Process. Technol. 1998;73:206–212. doi: 10.1016/S0924-0136(97)00230-6. DOI
Hlaváč L.M., Krajcarz D., Hlaváčová I.M., Spadło S. Precision comparison of analytical and statistical-regression models for AWJ cutting. Precis. Eng. 2017;50:148–159. doi: 10.1016/j.precisioneng.2017.05.002. DOI
Fabian S., Salokyová Š. AWJ cutting: The technological head vibrations with different abrasive mass flow rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI
Salokyová Š. Measurement and analysis of technological head vibrations in hydro-abrasive cutting technology. Acad. J. Manuf. Eng. 2014;12:90–95.
Salokyová Š. Measurement and analysis of mass flow and feed speed impact on technological head vibrations during cutting abrasion resistant steels with abrasive water jet technology. Key Eng. Mater. 2016;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI
Hloch S., Ruggiero A. Online monitoring and analysis of hydroabrasive cutting by vibration. Adv. Mech. Eng. 2013:894561. doi: 10.1155/2013/894561. DOI
Hreha P., Hloch S. Potential use of vibration for metrology and detection of surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2013;7:135–151. doi: 10.1504/IJSURFSE.2013.053699. DOI
Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI
Monno M., Ravasi C. The effect of cutting head vibrations on the surfaces generated by waterjet cutting. Int. J. Mach. Tools Manuf. 2005;45:355–363. doi: 10.1016/j.ijmachtools.2004.07.010. DOI
Prislupčák M., Panda A., Jančík M., Pandová I., Orendáč P., Krenický T. Applied Mechanics and Materials. Volume 616. Trans Tech Publications, Ltd.; Wallerau, Switzerland: 2014. Diagnostic and Experimental Valuation on Progressive Machining Unit; pp. 191–199. DOI
Olejarova S., Krenicky T. Water Jet Technology: Experimental Verification of the Input Factors Variation Influence on the Generated Vibration Levels and Frequency Spectra. Materials. 2021;14:4281. doi: 10.3390/ma14154281. PubMed DOI PMC
Copertaro E., Perotti F., Annoni M. Operational vibration of a waterjet focuser as means for monitoring its wear progression. Int. J. Adv. Manuf. Technol. 2021;116:1937–1949. doi: 10.1007/s00170-021-07534-0. DOI
Copertaro C., Perotti F., Castellini P., Chiariotti P., Martarelli M., Annoni M. Focusing tube operational vibration as a means for monitoring the abrasive waterjet cutting capability. J. Manuf. Processes. 2020;59:1–10. doi: 10.1016/j.jmapro.2020.09.040. DOI
Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.
Li H.Y., Geskin E.S., Chen W.L. Investigation of forces exerted by an abrasive water jet on workpiece. In: Vijay M.M., Savanick G.A., editors. Proceedings of the 5th American Water Jet Conference; Toronto, ON, Canada. 29–31 August 1989; Ottawa, ON, Canada: St. Louis, MI, USA: National Research Council of Canada; U.S. Water Jet Technology Association; 1989. pp. 69–77.
Kliuev M., Pude F., Stirnimann J., Wegener K. Measurement of the effective waterjet diameter by means of force signals. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting—Water Jet 2019; Čeladná, Czech Republic. 20–22 November 2019; Cham, Switzerland: Springer; 2021. pp. 15–27. Lecture Notes in Mechanical Engineering. DOI
Orbanic H., Junkar M., Bajsic I., Lebar A. An instrument for measuring abrasive water jet diameter. Int. J. Mach. Tools Manu. 2009;49:843–849. doi: 10.1016/j.ijmachtools.2009.05.008. DOI
Foldyna J., Sitek L., Švehla B., Švehla T. Utilization of ultrasound to enhance high-speed water jet effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI
Hlaváč L.M., Annoni M.P.G., Hlaváčová I.M., Arleo F., Viganò F., Štefek A. Abrasive Waterjet (AWJ) Forces—Potential Indicators of Machining Quality. Materials. 2021;14:3309. doi: 10.3390/ma14123309. PubMed DOI PMC
Mádr V., Lupták M., Hlaváč L. Force Sensor and Method of Force Sensing in the Process of Abrasive Water Jet. Cutting. CZ 303189. Patent No. 2012 April 5;
Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of Material Structure on Forces Measured during Abrasive Waterjet (AWJ) Machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC
Hlaváč L.M., Bańkowski D., Krajcarz D., Štefek A., Tyč M., Młynarczyk P. Abrasive Waterjet (AWJ) Forces—Indicator of Cutting System Malfunction. Materials. 2021;14:1683. doi: 10.3390/ma14071683. PubMed DOI PMC
Shi L.P., Fang Y., Dai Q.W., Huang W., Wang X.L. Surface texturing on SiC by multiphase jet machining with microdiamond abrasives. Mater. Manuf. Process. 2018;33:1415–1421. doi: 10.1080/10426914.2017.1401723. DOI
Mehta K.M., Pandey S.K., Shaikh V.A. Unconventional Machining of ceramic matrix Composites—A review. Mater. Today Proc. 2021;46:7661–7669. doi: 10.1016/j.matpr.2021.01.961. DOI
Hou R.G., Wang T., Lv Z., Liu Y.Y. Experimental Study of the Ultrasonic Vibration-Assisted Abrasive Waterjet Micromachining the Quartz Glass. Adv. Mater. Sci. Eng. 2018;2018:8904234. doi: 10.1155/2018/8904234. DOI
Singh D., Shukla R. Multi-objective optimization of selected non-traditional machining processes using NSGA-II. Decis. Sci. Lett. 2020;9:421–438. doi: 10.5267/j.dsl.2020.3.003. DOI
Debnath S., Kunar S., Anasane S.S., Bhattacharyya B. Non-traditional Micromachining Processes: Opportunities and Challenges. In: Kibria G., Bhattacharyya B., Davim J.P., editors. Non-Traditional Micromachining Processes: Fundamentals and Applications. Springer; Berlin/Heidelberg, Germany: 2017. pp. 1–59. (Book Series Materials Forming Machining and Tribology). DOI
Melentiev R., Fang F.Z. Recent advances and challenges of abrasive jet machining. CIRP J. Manuf. Sci. Technol. 2018;22:1–20. doi: 10.1016/j.cirpj.2018.06.001. DOI
Fürbacher I., Macek K., Steidl J. Lexikon Technických Materiálů se Zahraničními Ekvivalenty (Lexicon of Technical Materials with Foreign Equivalents) 1st ed. Praha; Dashöfer, Czech Republic: 1998. (In Czech)
Hlaváč L.M., Martinec P. Almandine garnets as abrasive material in high-energy waterjet—Physical modelling of interaction, experiment and prediction. In: Louis H., editor. Proceedings of the 14th International Conference on Jetting Technology; Brugge, Belgium. 21–23 September 1998; London, UK: Professional Engineering Publishing Ltd.; 1998. pp. 211–222.
Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI
Hlaváč L.M. Revised Model of Abrasive Water Jet Cutting for Industrial Use. Materials. 2021;14:4032. doi: 10.3390/ma14144032. PubMed DOI PMC
Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI
Pokusová M., Brúsilová A., Šooš L., Berta I. Abrasion Wear Behavior of High-chromium Cast Iron. Arch. Foundry Eng. 2016;16:69. doi: 10.1515/afe-2016-0028. DOI
Atabaki M.M., Jafari S., Abdollah-pour H. Abrasive Wear Behavior of High Chromium Cast Iron and Hadfield Steel—A Comparison. J. Iron Steel Res. 2012;19:43–50. doi: 10.1016/S1006-706X(12)60086-7. DOI
Titov V.I., Tarasenko L.V., Utkina A.N. Effect of alloying elements on the composition of carbide phases and mechanical properties of the matrix of high-carbon chromium–vanadium steel. Phys. Met. Metallogr. 2017;118:81–86. doi: 10.1134/S0031918X17010070. DOI
Kagawa A., Kawashima S., Ohta Y. Wear Properties of (Fe, Cr)7C3 Carbide Bulk Alloys. Mater. Trans. Jim. 1992;33:1171–1177. doi: 10.2320/matertrans1989.33.1171. DOI
Chakraborty G., Kumar N., Das C.R., Albert S.K., Bhaduri A.K., Dash S., Tyagi A.K. Study on microstructure and wear properties of different nickel base hardfacing alloys deposited on austenitic stainless steel. Surf. Coat. Technol. 2014;244:180–188. doi: 10.1016/j.surfcoat.2014.02.013. DOI
Yao Z., Liu M., Hu H., Tian J., Xu G. Microstructure and Wear Properties of a Bainite/Martensite Multi-phase Wear Resistant Steel. ISIJ Int. 2021;61:434–441. doi: 10.2355/isijinternational.ISIJINT-2020-327. DOI