New methodology of influential point detection in regression model building for the prediction of metabolic clearance rate of glucose
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15080566
DOI
10.1515/cclm.2004.057
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- amenorea diagnóza metabolismus patofyziologie MeSH
- globulin vázající pohlavní hormony analýza MeSH
- glukosa farmakokinetika farmakologie MeSH
- glykemický clamp MeSH
- hyperandrogenismus diagnóza metabolismus patofyziologie MeSH
- index tělesné hmotnosti MeSH
- interpretace statistických dat MeSH
- inzulin farmakologie MeSH
- krevní glukóza účinky léků metabolismus MeSH
- lidé MeSH
- metabolická clearance účinky léků MeSH
- metoda nejmenších čtverců MeSH
- počítačová grafika MeSH
- regresní analýza MeSH
- software MeSH
- statistické modely * MeSH
- triglyceridy krev MeSH
- výběr pacientů MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- globulin vázající pohlavní hormony MeSH
- glukosa MeSH
- inzulin MeSH
- krevní glukóza MeSH
- triglyceridy MeSH
Identifying outliers and high-leverage points is a fundamental step in the least-squares regression model building process. The examination of data quality involves the detection of influential points, outliers and high-leverages, which cause many problems in regression analysis. On the basis of a statistical analysis of the residuals (classical, normalized, standardized, jackknife, predicted and recursive) and diagonal elements of a projection matrix, diagnostic plots for influential points indication are formed. The identification of outliers and high leverage points are combined with graphs for the identification of influence type based on the likelihood distance. The powerful procedure for the computation of influential points characteristics written in S-Plus is demonstrated on the model predicting the metabolic clearance rate of glucose (MCRg) that represents the ratio of the amount of glucose supplied to maintain blood glucose levels during the euglycemic clamp and the blood glucose concentration from common laboratory and anthropometric indices. MCRg reflects insulin sensitivity filtering-off the effect of blood glucose. The prediction of clamp parameters should enable us to avoid the demanding clamp examination, which is connected with a higher load and risk for patients.
Citace poskytuje Crossref.org
Yoga Exercise Intervention Improves Balance Control and Prevents Falls in Seniors Aged 65
Effects of Transcranial Direct Current Stimulation Treatment for Anorexia Nervosa
Relation of prediabetes and type 2 diabetes mellitus to thyroid cancer
Effect of inferior alveolar nerve transection on the inorganic component of bone of rat mandible
A Comprehensive Evaluation of Steroid Metabolism in Women with Intrahepatic Cholestasis of Pregnancy