A Comprehensive Evaluation of Steroid Metabolism in Women with Intrahepatic Cholestasis of Pregnancy

. 2016 ; 11 (8) : e0159203. [epub] 20160805

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27494119

Intrahepatic cholestasis of pregnancy (ICP) is a common liver disorder, mostly occurring in the third trimester. ICP is defined as an elevation of serum bile acids, typically accompanied by pruritus and elevated activities of liver aminotransferases. ICP is caused by impaired biliary lipid secretion, in which endogenous steroids may play a key role. Although ICP is benign for the pregnant woman, it may be harmful for the fetus. We evaluated the differences between maternal circulating steroids measured by RIA (17-hydroxypregnenolone and its sulfate, 17-hydroxyprogesterone, and cortisol) and GC-MS (additional steroids), hepatic aminotransferases and bilirubin in women with ICP (n = 15, total bile acids (TBA) >8 μM) and corresponding controls (n = 17). An age-adjusted linear model, receiver-operating characteristics (ROC), and multivariate regression (a method of orthogonal projections to latent structure, OPLS) were used for data evaluation. While aminotransferases, conjugates of pregnanediols, 17-hydroxypregnenolone and 5β-androstane-3α,17β-diol were higher in ICP patients, 20α-dihydropregnenolone, 16α-hydroxy-steroids, sulfated 17-oxo-C19-steroids, and 5β-reduced steroids were lower. The OPLS model including steroids measured by GC-MS and RIA showed 93.3% sensitivity and 100% specificity, while the model including steroids measured by GC-MS in a single sample aliquot showed 93.3% sensitivity and 94.1% specificity. A composite index including ratios of sulfated 3α/β-hydroxy-5α/β-androstane-17-ones to conjugated 5α/β-pregnane-3α/β, 20α-diols discriminated with 93.3% specificity and 81.3% sensitivity (ROC analysis). These new data demonstrating altered steroidogenesis in ICP patients offer more detailed pathophysiological insights into the role of steroids in the development of ICP.

Zobrazit více v PubMed

Pusl T, Beuers U (2007) Intrahepatic cholestasis of pregnancy. Orphanet J Rare Dis 2: 26 PubMed PMC

Perez MJ, Macias RI, Marin JJ (2006) Maternal cholestasis induces placental oxidative stress and apoptosis. Protective effect of ursodeoxycholic acid. Placenta 27: 34–41. PubMed

Simjak P, Parizek A, Vitek L, Cerny A, Adamcova K, Koucky M, et al. (2015) Fetal complications due to intrahepatic cholestasis of pregnancy. J Perinat Med 43: 133–139. 10.1515/jpm-2014-0089 PubMed DOI

Hill M, Cibula D, Havlikova H, Kancheva L, Fait T, Kancheva R, et al. (2007) Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J Steroid Biochem Mol Biol 105: 166–175. PubMed

Hill M, Parizek A, Cibula D, Kancheva R, Jirasek JE, Velikova M, et al. (2010) Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J Steroid Biochem Mol Biol 122: 114–132. 10.1016/j.jsbmb.2010.05.007 PubMed DOI

Lammert F, Marschall HU, Glantz A, Matern S (2000) Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management. J Hepatol 33: 1012–1021. PubMed

Reyes H, Sjovall J (2000) Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann Med 32: 94–106. PubMed

Reyes H (2008) Sex hormones and bile acids in intrahepatic cholestasis of pregnancy. Hepatology 47: 376–379. 10.1002/hep.22139 PubMed DOI

Glantz A, Reilly SJ, Benthin L, Lammert F, Mattsson LA, Marschall HU, et al. (2008) Intrahepatic cholestasis of pregnancy: Amelioration of pruritus by UDCA is associated with decreased progesterone disulphates in urine. Hepatology 47: 544–551. PubMed

Meng LJ, Reyes H, Palma J, Hernandez I, Ribalta J, Sjovall J. (1997) Profiles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol 27: 346–357. PubMed

Meng LJ, Reyes H, Axelson M, Palma J, Hernandez I, Ribalta J, et al. (1997) Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: effect of ursodeoxycholic acid therapy. Hepatology 26: 1573–1579. PubMed

Meng LJ, Reyes H, Palma J, Hernandez I, Ribalta J, Sjovall J (1997) Effects of ursodeoxycholic acid on conjugated bile acids and progesterone metabolites in serum and urine of patients with intrahepatic cholestasis of pregnancy. J Hepatol 27: 1029–1040. PubMed

Pascual MJ, Serrano MA, El-Mir MY, Macias RI, Jimenez F, Marin JJ (2002) Relationship between asymptomatic hypercholanaemia of pregnancy and progesterone metabolism. Clin Sci (Lond) 102: 587–593. PubMed

Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S (2005) Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord 5: 289–303. PubMed

Abu-Hayyeh S, Papacleovoulou G, Lovgren-Sandblom A, Tahir M, Oduwole O, Jamaludin NA (2013) Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology 57: 716–726. 10.1002/hep.26055 PubMed DOI PMC

Milona A, Owen BM, Cobbold JF, Willemsen EC, Cox IJ, Boudjelal M, et al. (2010) Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function. Hepatology 52: 1341–1349. 10.1002/hep.23849 PubMed DOI

Vallejo M, Briz O, Serrano MA, Monte MJ, Marin JJ (2006) Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol 44: 1150–1157. PubMed

Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123: 1649–1658. PubMed

Wang C, Chen X, Zhou SF, Li X (2011) Impaired fetal adrenal function in intrahepatic cholestasis of pregnancy. Med Sci Monit 17: CR265–271. PubMed PMC

Leslie KK, Reznikov L, Simon FR, Fennessey PV, Reyes H, Ribalta J (2000) Estrogens in intrahepatic cholestasis of pregnancy. Obstet Gynecol 95: 372–376. PubMed

Imai K, Hayashi Y (1970) Steroid-induced intrahepatic cholestasis in mice. Jpn J Pharmacol 20: 473–481. PubMed

Martineau M, Papacleovoulou G, Abu-Hayyeh S, Dixon PH, Ji H, Powrie R, et al. (2014) Cholestatic pregnancy is associated with reduced placental 11betaHSD2 expression. Placenta 35: 37–43. 10.1016/j.placenta.2013.10.019 PubMed DOI

Hill M, Parizek A, Kancheva R, Duskova M, Velikova M, Kriz L, et al. (2010) Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J Steroid Biochem Mol Biol 121: 594–610. 10.1016/j.jsbmb.2009.10.012 PubMed DOI

Hill M, Zarubova J, Marusic P, Vrbikova J, Velikova M, Kancheva R, et al. (2010) Effects of valproate and carbamazepine monotherapy on neuroactive steroids, their precursors and metabolites in adult men with epilepsy. J Steroid Biochem Mol Biol 122: 239–252. 10.1016/j.jsbmb.2010.06.003 PubMed DOI

Hill M, Vrbikova J, Zarubova J, Kancheva R, Velikova M, Kancheva L, et al. (2011) The steroid metabolome in lamotrigine-treated women with epilepsy. Steroids 76: 1351–1357. 10.1016/j.steroids.2011.07.002 PubMed DOI

Hill M, Hampl R, Lukac D, Lapcik O, Pouzar V, Sulcova J (1999) Elimination of cross-reactivity by addition of an excess of cross-reactant for radioimmunoassay of 17alpha-hydroxypregnenolone. Steroids 64: 341–355. PubMed

Vcelakova H, Hill M, Lapcik O, Parizek A (2007) Determination of 17alpha-hydroxypregnenolone sulfate and its application in diagnostics. Steroids 72: 323–327. PubMed

Dehennin L, Peres G (1996) Plasma and urinary markers of oral testosterone misuse by healthy men in presence of masking epitestosterone administration. Int J Sports Med 17: 315–319. PubMed

Brochu M, Belanger A (1987) Comparative study of plasma steroid and steroid glucuronide levels in normal men and in men with benign prostatic hyperplasia. Prostate 11: 33–40. PubMed

Sanchez-Guijo A, Oji V, Hartmann MF, Traupe H, Wudy SA (2015) Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J Lipid Res 56: 1843–1851. 10.1194/jlr.D061499 PubMed DOI PMC

Labrie F, Belanger A, Cusan L, Gomez JL, Candas B (1997) Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 82: 2396–2402. PubMed

Brochu M, Belanger A, Dupont A, Cusan L, Labrie F (1987) Effects of flutamide and aminoglutethimide on plasma 5 alpha-reduced steroid glucuronide concentrations in castrated patients with cancer of the prostate. J Steroid Biochem 28: 619–622. PubMed

Tokushige K, Hashimoto E, Kodama K, Tobari M, Matsushita N, Kogiso T, et al. (2013) Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J Gastroenterol 48: 1392–1400. 10.1007/s00535-013-0766-5 PubMed DOI PMC

Meloun M, Hill M, Militky J, Kupka K (2000) Transformation in the PC-aided biochemical data analysis. Clin Chem Lab Med 38: 553–559. PubMed

Meloun M, Hill M, Militky J, Vrbikova J, Stanicka S, Skrha J (2004) New methodology of influential point detection in regression model building for the prediction of metabolic clearance rate of glucose. Clin Chem Lab Med 42: 311–322. PubMed

Meloun M, Militky J, Hill M, Brereton RG (2002) Crucial problems in regression modelling and their solutions. Analyst 127: 433–450. PubMed

Escobar-Morreale HF, Asuncion M, Calvo RM, Sancho J, San Millan JL (2001) Receiver operating characteristic analysis of the performance of basal serum hormone profiles for the diagnosis of polycystic ovary syndrome in epidemiological studies. Eur J Endocrinol 145: 619–624. PubMed

Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. (2012) Metabolite profiling of Alzheimer's disease cerebrospinal fluid. PLoS One 7: e31501 10.1371/journal.pone.0031501 PubMed DOI PMC

Youden WJ (1950) Index for rating diagnostic tests. Cancer 3: 32–35. PubMed

Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6: 469–479. PubMed

Trygg J, Wold S (2002) Orthogonal projections to latent structure. J Chemometrics 16: 119–128.

Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659: 23–33. 10.1016/j.aca.2009.11.042 PubMed DOI

Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15: 804–816. PubMed PMC

Smith R, Nicholson RC (2007) Corticotrophin releasing hormone and the timing of birth. Front Biosci 12: 912–918. PubMed

Smith R, Smith JI, Shen X, Engel PJ, Bowman ME, McGrath SA, et al. (2009) Patterns of plasma corticotropin-releasing hormone, progesterone, estradiol, and estriol change and the onset of human labor. J Clin Endocrinol Metab 94: 2066–2074. 10.1210/jc.2008-2257 PubMed DOI

Sirianni R, Mayhew BA, Carr BR, Parker CR Jr., Rainey WE (2005) Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J Clin Endocrinol Metab 90: 5393–5400. PubMed

Sirianni R, Rehman KS, Carr BR, Parker CR Jr., Rainey WE (2005) Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J Clin Endocrinol Metab 90: 279–285. PubMed

Zhou F, He MM, Liu ZF, Zhang L, Gao BX, Wang XD (2013) Expression of corticotrophin-releasing hormone and its receptor in patients with intrahepatic cholestasis of pregnancy. Placenta 34: 401–406. 10.1016/j.placenta.2013.02.006 PubMed DOI

Laatikainen TJ, Peltonen JI, Nylander PL (1974) Effect of maternal intrahepatic cholestasis on fetal steroid metabolism. J Clin Invest 53: 1709–1715. PubMed PMC

Storbeck KH, Swart AC, Goosen P, Swart P (2013) Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 371: 87–99. 10.1016/j.mce.2012.11.020 PubMed DOI

Neunzig J, Sanchez-Guijo A, Mosa A, Hartmann MF, Geyer J, Wudy SA, et al. (2014) A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol 144 Pt B: 324–333. 10.1016/j.jsbmb.2014.07.005 PubMed DOI

Homma K, Hasegawa T, Nagai T, Adachi M, Horikawa R, Fujiwara I, et al. (2006) Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. J Clin Endocrinol Metab 91: 2643–2649. PubMed

Kamrath C, Hartmann MF, Wudy SA (2013) Androgen synthesis in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm Metab Res 45: 86–91. 10.1055/s-0032-1331751 PubMed DOI

Fukami M, Homma K, Hasegawa T, Ogata T (2013) Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development. Dev Dyn 242: 320–329. 10.1002/dvdy.23892 PubMed DOI

Abu-Hayyeh S, Ovadia C, Lieu T, Jensen DD, Chambers J, Dixon PH, et al. (2015) Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum. Hepatology. PubMed PMC

Gonzales E, Cresteil D, Baussan C, Dabadie A, Gerhardt MF, Jacquemin E (2004) SRD5B1 (AKR1D1) gene analysis in delta(4)-3-oxosteroid 5beta-reductase deficiency: evidence for primary genetic defect. J Hepatol 40: 716–718. PubMed

Chen M, Jin Y, Penning TM (2015) In-Depth Dissection of the P133R Mutation in Steroid 5beta-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency. Biochemistry 54: 6343–6351. 10.1021/acs.biochem.5b00816 PubMed DOI PMC

Lemonde HA, Custard EJ, Bouquet J, Duran M, Overmars H, Scambler PJ, et al. (2003) Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)-3-oxosteroid 5beta-reductase, in hepatitis and liver failure in infancy. Gut 52: 1494–1499. PubMed PMC

Chen M, Drury JE, Penning TM (2011) Substrate specificity and inhibitor analyses of human steroid 5beta-reductase (AKR1D1). Steroids 76: 484–490. 10.1016/j.steroids.2011.01.003 PubMed DOI PMC

Hirst JJ, Kelleher MA, Walker DW, Palliser HK (2014) Neuroactive steroids in pregnancy: key regulatory and protective roles in the foetal brain. J Steroid Biochem Mol Biol 139: 144–153. 10.1016/j.jsbmb.2013.04.002 PubMed DOI

Hill M, Paskova A, Kanceva R, Velikova M, Kubatova J, Kancheva L, et al. (2014) Steroid profiling in pregnancy: a focus on the human fetus. J Steroid Biochem Mol Biol 139: 201–222. 10.1016/j.jsbmb.2013.03.008 PubMed DOI

Cheng J, Ma X, Gonzalez FJ (2011) Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 163: 461–468. 10.1111/j.1476-5381.2010.01129.x PubMed DOI PMC

Li T, Chiang JY (2013) Nuclear receptors in bile acid metabolism. Drug Metab Rev 45: 145–155. 10.3109/03602532.2012.740048 PubMed DOI PMC

Chen J, Zhao KN, Chen C (2014) The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann Transl Med 2: 7 10.3978/j.issn.2305-5839.2013.03.02 PubMed DOI PMC

Huang WM, Gowda M, Donnelly JG (2009) Bile acid ratio in diagnosis of intrahepatic cholestasis of pregnancy. Am J Perinatol 26: 291–294. 10.1055/s-0028-1103158 PubMed DOI

Chen J, Deng W, Wang J, Shao Y, Ou M, Ding M (2013) Primary bile acids as potential biomarkers for the clinical grading of intrahepatic cholestasis of pregnancy. Int J Gynaecol Obstet 122: 5–8. 10.1016/j.ijgo.2013.02.015 PubMed DOI

Kremer AE, Bolier R, Dixon PH, Geenes V, Chambers J, Tolenaars D, et al. (2015) Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy. J Hepatol 62: 897–904. 10.1016/j.jhep.2014.10.041 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...