A Comprehensive Evaluation of Steroid Metabolism in Women with Intrahepatic Cholestasis of Pregnancy
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27494119
PubMed Central
PMC4975406
DOI
10.1371/journal.pone.0159203
PII: PONE-D-16-12188
Knihovny.cz E-zdroje
- MeSH
- 17-alfa-hydroxypregnenolon krev chemie MeSH
- 17-alfa-hydroxyprogesteron krev chemie MeSH
- alanintransaminasa krev MeSH
- aspartátaminotransferasy krev MeSH
- dospělí MeSH
- gestační stáří MeSH
- hydrokortison krev chemie MeSH
- intrahepatální cholestáza diagnóza metabolismus patologie MeSH
- jaterní testy MeSH
- komplikace těhotenství diagnóza metabolismus patologie MeSH
- lidé MeSH
- nuclei raphe dorsalis MeSH
- plocha pod křivkou MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- radioimunoanalýza MeSH
- ROC křivka MeSH
- steroidy krev chemie metabolismus MeSH
- těhotenství MeSH
- žlučové kyseliny a soli analýza MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 17-alfa-hydroxypregnenolon MeSH
- 17-alfa-hydroxyprogesteron MeSH
- alanintransaminasa MeSH
- aspartátaminotransferasy MeSH
- hydrokortison MeSH
- steroidy MeSH
- žlučové kyseliny a soli MeSH
Intrahepatic cholestasis of pregnancy (ICP) is a common liver disorder, mostly occurring in the third trimester. ICP is defined as an elevation of serum bile acids, typically accompanied by pruritus and elevated activities of liver aminotransferases. ICP is caused by impaired biliary lipid secretion, in which endogenous steroids may play a key role. Although ICP is benign for the pregnant woman, it may be harmful for the fetus. We evaluated the differences between maternal circulating steroids measured by RIA (17-hydroxypregnenolone and its sulfate, 17-hydroxyprogesterone, and cortisol) and GC-MS (additional steroids), hepatic aminotransferases and bilirubin in women with ICP (n = 15, total bile acids (TBA) >8 μM) and corresponding controls (n = 17). An age-adjusted linear model, receiver-operating characteristics (ROC), and multivariate regression (a method of orthogonal projections to latent structure, OPLS) were used for data evaluation. While aminotransferases, conjugates of pregnanediols, 17-hydroxypregnenolone and 5β-androstane-3α,17β-diol were higher in ICP patients, 20α-dihydropregnenolone, 16α-hydroxy-steroids, sulfated 17-oxo-C19-steroids, and 5β-reduced steroids were lower. The OPLS model including steroids measured by GC-MS and RIA showed 93.3% sensitivity and 100% specificity, while the model including steroids measured by GC-MS in a single sample aliquot showed 93.3% sensitivity and 94.1% specificity. A composite index including ratios of sulfated 3α/β-hydroxy-5α/β-androstane-17-ones to conjugated 5α/β-pregnane-3α/β, 20α-diols discriminated with 93.3% specificity and 81.3% sensitivity (ROC analysis). These new data demonstrating altered steroidogenesis in ICP patients offer more detailed pathophysiological insights into the role of steroids in the development of ICP.
Zobrazit více v PubMed
Pusl T, Beuers U (2007) Intrahepatic cholestasis of pregnancy. Orphanet J Rare Dis 2: 26 PubMed PMC
Perez MJ, Macias RI, Marin JJ (2006) Maternal cholestasis induces placental oxidative stress and apoptosis. Protective effect of ursodeoxycholic acid. Placenta 27: 34–41. PubMed
Simjak P, Parizek A, Vitek L, Cerny A, Adamcova K, Koucky M, et al. (2015) Fetal complications due to intrahepatic cholestasis of pregnancy. J Perinat Med 43: 133–139. 10.1515/jpm-2014-0089 PubMed DOI
Hill M, Cibula D, Havlikova H, Kancheva L, Fait T, Kancheva R, et al. (2007) Circulating levels of pregnanolone isomers during the third trimester of human pregnancy. J Steroid Biochem Mol Biol 105: 166–175. PubMed
Hill M, Parizek A, Cibula D, Kancheva R, Jirasek JE, Velikova M, et al. (2010) Steroid metabolome in fetal and maternal body fluids in human late pregnancy. J Steroid Biochem Mol Biol 122: 114–132. 10.1016/j.jsbmb.2010.05.007 PubMed DOI
Lammert F, Marschall HU, Glantz A, Matern S (2000) Intrahepatic cholestasis of pregnancy: molecular pathogenesis, diagnosis and management. J Hepatol 33: 1012–1021. PubMed
Reyes H, Sjovall J (2000) Bile acids and progesterone metabolites in intrahepatic cholestasis of pregnancy. Ann Med 32: 94–106. PubMed
Reyes H (2008) Sex hormones and bile acids in intrahepatic cholestasis of pregnancy. Hepatology 47: 376–379. 10.1002/hep.22139 PubMed DOI
Glantz A, Reilly SJ, Benthin L, Lammert F, Mattsson LA, Marschall HU, et al. (2008) Intrahepatic cholestasis of pregnancy: Amelioration of pruritus by UDCA is associated with decreased progesterone disulphates in urine. Hepatology 47: 544–551. PubMed
Meng LJ, Reyes H, Palma J, Hernandez I, Ribalta J, Sjovall J. (1997) Profiles of bile acids and progesterone metabolites in the urine and serum of women with intrahepatic cholestasis of pregnancy. J Hepatol 27: 346–357. PubMed
Meng LJ, Reyes H, Axelson M, Palma J, Hernandez I, Ribalta J, et al. (1997) Progesterone metabolites and bile acids in serum of patients with intrahepatic cholestasis of pregnancy: effect of ursodeoxycholic acid therapy. Hepatology 26: 1573–1579. PubMed
Meng LJ, Reyes H, Palma J, Hernandez I, Ribalta J, Sjovall J (1997) Effects of ursodeoxycholic acid on conjugated bile acids and progesterone metabolites in serum and urine of patients with intrahepatic cholestasis of pregnancy. J Hepatol 27: 1029–1040. PubMed
Pascual MJ, Serrano MA, El-Mir MY, Macias RI, Jimenez F, Marin JJ (2002) Relationship between asymptomatic hypercholanaemia of pregnancy and progesterone metabolism. Clin Sci (Lond) 102: 587–593. PubMed
Rizzo G, Renga B, Mencarelli A, Pellicciari R, Fiorucci S (2005) Role of FXR in regulating bile acid homeostasis and relevance for human diseases. Curr Drug Targets Immune Endocr Metabol Disord 5: 289–303. PubMed
Abu-Hayyeh S, Papacleovoulou G, Lovgren-Sandblom A, Tahir M, Oduwole O, Jamaludin NA (2013) Intrahepatic cholestasis of pregnancy levels of sulfated progesterone metabolites inhibit farnesoid X receptor resulting in a cholestatic phenotype. Hepatology 57: 716–726. 10.1002/hep.26055 PubMed DOI PMC
Milona A, Owen BM, Cobbold JF, Willemsen EC, Cox IJ, Boudjelal M, et al. (2010) Raised hepatic bile acid concentrations during pregnancy in mice are associated with reduced farnesoid X receptor function. Hepatology 52: 1341–1349. 10.1002/hep.23849 PubMed DOI
Vallejo M, Briz O, Serrano MA, Monte MJ, Marin JJ (2006) Potential role of trans-inhibition of the bile salt export pump by progesterone metabolites in the etiopathogenesis of intrahepatic cholestasis of pregnancy. J Hepatol 44: 1150–1157. PubMed
Byrne JA, Strautnieks SS, Mieli-Vergani G, Higgins CF, Linton KJ, Thompson RJ (2002) The human bile salt export pump: characterization of substrate specificity and identification of inhibitors. Gastroenterology 123: 1649–1658. PubMed
Wang C, Chen X, Zhou SF, Li X (2011) Impaired fetal adrenal function in intrahepatic cholestasis of pregnancy. Med Sci Monit 17: CR265–271. PubMed PMC
Leslie KK, Reznikov L, Simon FR, Fennessey PV, Reyes H, Ribalta J (2000) Estrogens in intrahepatic cholestasis of pregnancy. Obstet Gynecol 95: 372–376. PubMed
Imai K, Hayashi Y (1970) Steroid-induced intrahepatic cholestasis in mice. Jpn J Pharmacol 20: 473–481. PubMed
Martineau M, Papacleovoulou G, Abu-Hayyeh S, Dixon PH, Ji H, Powrie R, et al. (2014) Cholestatic pregnancy is associated with reduced placental 11betaHSD2 expression. Placenta 35: 37–43. 10.1016/j.placenta.2013.10.019 PubMed DOI
Hill M, Parizek A, Kancheva R, Duskova M, Velikova M, Kriz L, et al. (2010) Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J Steroid Biochem Mol Biol 121: 594–610. 10.1016/j.jsbmb.2009.10.012 PubMed DOI
Hill M, Zarubova J, Marusic P, Vrbikova J, Velikova M, Kancheva R, et al. (2010) Effects of valproate and carbamazepine monotherapy on neuroactive steroids, their precursors and metabolites in adult men with epilepsy. J Steroid Biochem Mol Biol 122: 239–252. 10.1016/j.jsbmb.2010.06.003 PubMed DOI
Hill M, Vrbikova J, Zarubova J, Kancheva R, Velikova M, Kancheva L, et al. (2011) The steroid metabolome in lamotrigine-treated women with epilepsy. Steroids 76: 1351–1357. 10.1016/j.steroids.2011.07.002 PubMed DOI
Hill M, Hampl R, Lukac D, Lapcik O, Pouzar V, Sulcova J (1999) Elimination of cross-reactivity by addition of an excess of cross-reactant for radioimmunoassay of 17alpha-hydroxypregnenolone. Steroids 64: 341–355. PubMed
Vcelakova H, Hill M, Lapcik O, Parizek A (2007) Determination of 17alpha-hydroxypregnenolone sulfate and its application in diagnostics. Steroids 72: 323–327. PubMed
Dehennin L, Peres G (1996) Plasma and urinary markers of oral testosterone misuse by healthy men in presence of masking epitestosterone administration. Int J Sports Med 17: 315–319. PubMed
Brochu M, Belanger A (1987) Comparative study of plasma steroid and steroid glucuronide levels in normal men and in men with benign prostatic hyperplasia. Prostate 11: 33–40. PubMed
Sanchez-Guijo A, Oji V, Hartmann MF, Traupe H, Wudy SA (2015) Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J Lipid Res 56: 1843–1851. 10.1194/jlr.D061499 PubMed DOI PMC
Labrie F, Belanger A, Cusan L, Gomez JL, Candas B (1997) Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging. J Clin Endocrinol Metab 82: 2396–2402. PubMed
Brochu M, Belanger A, Dupont A, Cusan L, Labrie F (1987) Effects of flutamide and aminoglutethimide on plasma 5 alpha-reduced steroid glucuronide concentrations in castrated patients with cancer of the prostate. J Steroid Biochem 28: 619–622. PubMed
Tokushige K, Hashimoto E, Kodama K, Tobari M, Matsushita N, Kogiso T, et al. (2013) Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J Gastroenterol 48: 1392–1400. 10.1007/s00535-013-0766-5 PubMed DOI PMC
Meloun M, Hill M, Militky J, Kupka K (2000) Transformation in the PC-aided biochemical data analysis. Clin Chem Lab Med 38: 553–559. PubMed
Meloun M, Hill M, Militky J, Vrbikova J, Stanicka S, Skrha J (2004) New methodology of influential point detection in regression model building for the prediction of metabolic clearance rate of glucose. Clin Chem Lab Med 42: 311–322. PubMed
Meloun M, Militky J, Hill M, Brereton RG (2002) Crucial problems in regression modelling and their solutions. Analyst 127: 433–450. PubMed
Escobar-Morreale HF, Asuncion M, Calvo RM, Sancho J, San Millan JL (2001) Receiver operating characteristic analysis of the performance of basal serum hormone profiles for the diagnosis of polycystic ovary syndrome in epidemiological studies. Eur J Endocrinol 145: 619–624. PubMed
Czech C, Berndt P, Busch K, Schmitz O, Wiemer J, Most V, et al. (2012) Metabolite profiling of Alzheimer's disease cerebrospinal fluid. PLoS One 7: e31501 10.1371/journal.pone.0031501 PubMed DOI PMC
Youden WJ (1950) Index for rating diagnostic tests. Cancer 3: 32–35. PubMed
Trygg J, Holmes E, Lundstedt T (2007) Chemometrics in metabonomics. J Proteome Res 6: 469–479. PubMed
Trygg J, Wold S (2002) Orthogonal projections to latent structure. J Chemometrics 16: 119–128.
Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics—a review in human disease diagnosis. Anal Chim Acta 659: 23–33. 10.1016/j.aca.2009.11.042 PubMed DOI
Monte MJ, Marin JJ, Antelo A, Vazquez-Tato J (2009) Bile acids: chemistry, physiology, and pathophysiology. World J Gastroenterol 15: 804–816. PubMed PMC
Smith R, Nicholson RC (2007) Corticotrophin releasing hormone and the timing of birth. Front Biosci 12: 912–918. PubMed
Smith R, Smith JI, Shen X, Engel PJ, Bowman ME, McGrath SA, et al. (2009) Patterns of plasma corticotropin-releasing hormone, progesterone, estradiol, and estriol change and the onset of human labor. J Clin Endocrinol Metab 94: 2066–2074. 10.1210/jc.2008-2257 PubMed DOI
Sirianni R, Mayhew BA, Carr BR, Parker CR Jr., Rainey WE (2005) Corticotropin-releasing hormone (CRH) and urocortin act through type 1 CRH receptors to stimulate dehydroepiandrosterone sulfate production in human fetal adrenal cells. J Clin Endocrinol Metab 90: 5393–5400. PubMed
Sirianni R, Rehman KS, Carr BR, Parker CR Jr., Rainey WE (2005) Corticotropin-releasing hormone directly stimulates cortisol and the cortisol biosynthetic pathway in human fetal adrenal cells. J Clin Endocrinol Metab 90: 279–285. PubMed
Zhou F, He MM, Liu ZF, Zhang L, Gao BX, Wang XD (2013) Expression of corticotrophin-releasing hormone and its receptor in patients with intrahepatic cholestasis of pregnancy. Placenta 34: 401–406. 10.1016/j.placenta.2013.02.006 PubMed DOI
Laatikainen TJ, Peltonen JI, Nylander PL (1974) Effect of maternal intrahepatic cholestasis on fetal steroid metabolism. J Clin Invest 53: 1709–1715. PubMed PMC
Storbeck KH, Swart AC, Goosen P, Swart P (2013) Cytochrome b5: novel roles in steroidogenesis. Mol Cell Endocrinol 371: 87–99. 10.1016/j.mce.2012.11.020 PubMed DOI
Neunzig J, Sanchez-Guijo A, Mosa A, Hartmann MF, Geyer J, Wudy SA, et al. (2014) A steroidogenic pathway for sulfonated steroids: the metabolism of pregnenolone sulfate. J Steroid Biochem Mol Biol 144 Pt B: 324–333. 10.1016/j.jsbmb.2014.07.005 PubMed DOI
Homma K, Hasegawa T, Nagai T, Adachi M, Horikawa R, Fujiwara I, et al. (2006) Urine steroid hormone profile analysis in cytochrome P450 oxidoreductase deficiency: implication for the backdoor pathway to dihydrotestosterone. J Clin Endocrinol Metab 91: 2643–2649. PubMed
Kamrath C, Hartmann MF, Wudy SA (2013) Androgen synthesis in patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm Metab Res 45: 86–91. 10.1055/s-0032-1331751 PubMed DOI
Fukami M, Homma K, Hasegawa T, Ogata T (2013) Backdoor pathway for dihydrotestosterone biosynthesis: implications for normal and abnormal human sex development. Dev Dyn 242: 320–329. 10.1002/dvdy.23892 PubMed DOI
Abu-Hayyeh S, Ovadia C, Lieu T, Jensen DD, Chambers J, Dixon PH, et al. (2015) Prognostic and mechanistic potential of progesterone sulfates in intrahepatic cholestasis of pregnancy and pruritus gravidarum. Hepatology. PubMed PMC
Gonzales E, Cresteil D, Baussan C, Dabadie A, Gerhardt MF, Jacquemin E (2004) SRD5B1 (AKR1D1) gene analysis in delta(4)-3-oxosteroid 5beta-reductase deficiency: evidence for primary genetic defect. J Hepatol 40: 716–718. PubMed
Chen M, Jin Y, Penning TM (2015) In-Depth Dissection of the P133R Mutation in Steroid 5beta-Reductase (AKR1D1): A Molecular Basis of Bile Acid Deficiency. Biochemistry 54: 6343–6351. 10.1021/acs.biochem.5b00816 PubMed DOI PMC
Lemonde HA, Custard EJ, Bouquet J, Duran M, Overmars H, Scambler PJ, et al. (2003) Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)-3-oxosteroid 5beta-reductase, in hepatitis and liver failure in infancy. Gut 52: 1494–1499. PubMed PMC
Chen M, Drury JE, Penning TM (2011) Substrate specificity and inhibitor analyses of human steroid 5beta-reductase (AKR1D1). Steroids 76: 484–490. 10.1016/j.steroids.2011.01.003 PubMed DOI PMC
Hirst JJ, Kelleher MA, Walker DW, Palliser HK (2014) Neuroactive steroids in pregnancy: key regulatory and protective roles in the foetal brain. J Steroid Biochem Mol Biol 139: 144–153. 10.1016/j.jsbmb.2013.04.002 PubMed DOI
Hill M, Paskova A, Kanceva R, Velikova M, Kubatova J, Kancheva L, et al. (2014) Steroid profiling in pregnancy: a focus on the human fetus. J Steroid Biochem Mol Biol 139: 201–222. 10.1016/j.jsbmb.2013.03.008 PubMed DOI
Cheng J, Ma X, Gonzalez FJ (2011) Pregnane X receptor- and CYP3A4-humanized mouse models and their applications. Br J Pharmacol 163: 461–468. 10.1111/j.1476-5381.2010.01129.x PubMed DOI PMC
Li T, Chiang JY (2013) Nuclear receptors in bile acid metabolism. Drug Metab Rev 45: 145–155. 10.3109/03602532.2012.740048 PubMed DOI PMC
Chen J, Zhao KN, Chen C (2014) The role of CYP3A4 in the biotransformation of bile acids and therapeutic implication for cholestasis. Ann Transl Med 2: 7 10.3978/j.issn.2305-5839.2013.03.02 PubMed DOI PMC
Huang WM, Gowda M, Donnelly JG (2009) Bile acid ratio in diagnosis of intrahepatic cholestasis of pregnancy. Am J Perinatol 26: 291–294. 10.1055/s-0028-1103158 PubMed DOI
Chen J, Deng W, Wang J, Shao Y, Ou M, Ding M (2013) Primary bile acids as potential biomarkers for the clinical grading of intrahepatic cholestasis of pregnancy. Int J Gynaecol Obstet 122: 5–8. 10.1016/j.ijgo.2013.02.015 PubMed DOI
Kremer AE, Bolier R, Dixon PH, Geenes V, Chambers J, Tolenaars D, et al. (2015) Autotaxin activity has a high accuracy to diagnose intrahepatic cholestasis of pregnancy. J Hepatol 62: 897–904. 10.1016/j.jhep.2014.10.041 PubMed DOI
Steroid Metabolome Analysis in Dichorionic Diamniotic Twin Pregnancy