Effect of inferior alveolar nerve transection on the inorganic component of bone of rat mandible
Jazyk angličtina Země Řecko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32481243
PubMed Central
PMC7288387
Knihovny.cz E-zdroje
- Klíčová slova
- Elements, Inferior Alveolar Nerve, Mandible, Nerve Transection, Rats,
- MeSH
- axotomie MeSH
- krysa rodu Rattus MeSH
- mandibula chemie inervace MeSH
- nervus mandibularis fyziologie MeSH
- potkani Wistar MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
OBJECTIVE: The aim of the study was to test the effect of transecting the inferior alveolar nerve on the inorganic bone component of the rat mandible. METHODS: 7-9 weeks old, male Wistar rats were used for the study. The animals were divided in 3 groups: control, experimental (nerve was transected) and sham (nerve was only prepared but not transected). After 4 weeks, the animals were killed, their teeth were extracted, and the mandibular bone was divided in 4 parts. Inductively coupled plasma mass spectrometry was used to the levels of 7 elements in the bone. RESULTS: The study results demonstrate that transection of the inferior alveolar nerve caused a decrease in calcium, iron, and strontium, and an increase of zinc. It caused the differences in potassium contents between the sides was significantly lower in the experimental group. The increase in the magnesium content, and decrease of sodium and potassium in the experimental group, as well as differences in the contents of: magnesium, sodium, potassium, iron and zinc between individual locations in the mandible are associated with the surgical approach. CONCLUSION: The results support our hypothesis - that sensory innervation has an impact on the inorganic component of the mandibular bone.
Institute of Endocrinology Prague Czech Republic
Institute of Physiology 1st Faculty of Medicine Charles University Prague Czech Republic
Zobrazit více v PubMed
Elefteriou F. Neuronal signaling and the regulation of bone remodeling. Cell Mol Life Sci. 2005;62:2339–2349. PubMed PMC
García-Castellano JM, Díaz-Herrera P, Morcuende JA. Is bone a target-tissue for the nervous system?New advances on the understanding of their interactions. Iowa Orthop J. 2000;20:49–58. PubMed PMC
Konttinen Y, Imai S, Suda A. Neuropeptides and the puzzle of bone remodeling. State of the art. Acta Orthop Scand. 1996;67:632–639. PubMed
Patel MS, Elefteriou F. The new field of neuroskeletal biology. Calcif Tissue Int. 2007;80:337–347. PubMed
Elefteriou F. Regulation of bone remodeling by the central and periferial nervous system. Arch Biochem Biophys. 2008;473:231–236. PubMed PMC
Lerner UH, Persson E, Lundberg P. Kinins and neuro-osteogenic factors. In: Bilezikian J.P, Raisz L.G, Martin T.J, editors. Principles of Bone Biology. 3rd edn. San Diego, CA: Academic Press; 2008. pp. 1025–1057.
Sample SJ, Hao Z, Wilson AP, Muir P. Role of calcitonin gene-related peptide in bone repair after cyclic fatigue loading. PLoS One. 2011;6:20386. PubMed PMC
Wu Q, Yang B, Cao C, Guang M, Gong P. Age-dependent impact of inferior alveolar nerve transection on mandibular bone metabolism and the underlying mechanisms. J Mol Histol. 2016;47:579–586. PubMed
Lüllmann-Rauch R. Překlad 3.vydání. Praha: Grada Publishing; 2012. Histologie.
Chenu C. Role of innervation in the control of bone remodeling. J Musculoskelet Neuronal Interact. 2004;4:132–134. PubMed
Žofková I. Osteologie a kalcium-fosfátovýmetabolismus. Praha: Grada Publishing; 2012.
Smrčka V. Trace elements in bone tissue. Univerzita Karlova v Praze, NakladatelstvíKarolinum. 2005
Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol. 2015;32:86–106. PubMed
Kaji H, Sugimoto T, Kanatani M, Chihara K. High extracellular calcium stimulates osteoclast-like cell formation and bone-resorbing activity in the presence of osteoblastic cells. J Bone Miner Res. 1996;11:912–920. PubMed
Parelman M, Stoecker B, Baker A, Medeiros D. Iron restriction negatively affects bone in female rats and mineralization of hFOB osteoblast cells. Exp Biol Med (Maywood) 2006;231:378–386. PubMed
Yamaguchi M, Oishi H, Suketa Y. Stimulatory effect of zinc on bone formation in tissue culture. Biochem Pharmacol. 1987;36:4007–4012. PubMed
Henrotin Y, Labasse A, Zheng SX, Galais P, Tsouderos Y, Crielaard JM, Reginster JY. Strontium ranelate increases cartilage matrix formation. J Bone Miner Res. 2001;16:299–308. PubMed
Cianferotti L, D'Asta F, Brandi ML. A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Ther Adv Musculoskelet Dis. 2013;5:127–139. PubMed PMC
Meloun M, Hill M, Militký J, Kupka K. Transformation in the PC-aided biochemical data analysis. Clin Chem Lab Med. 2000;38:553–559. PubMed
Meloun M, Militký J, Hill M, Brereton RG. Crucial problems in regression modelling and their solutions. Analyst. 2002;127:433–450. PubMed
Meloun M, Hill M, Militký J, Vrbíková J, Stanická S, Skrha J. New methodology of influential point detection in regression model building for the prediction of metabolic clearance rate of glucose. Clin Chem Lab Med. 2004;42:311–322. PubMed
Kunc Z. Bilateral trigeminal neuralgia. Česk Neurol Neurochir. 1976;39:305–309. PubMed
Travers JB. Oromotor nuclei. Chapter 11. In: Paxinos G, editor. The rat nervous system. Forth edition. London, Waltham, San Diego: Academic Press Elsevier; 2015. pp. 223–238.
Tanaka E, Sano R, Kawai N, Langenbach GE, Brugman P, Tanne K, van Eijden TM. Effect of food consistency on the degree of mineralization in the rat mandible. Ann Biomed Eng. 2007;35:1617–1621. PubMed
de Jong WC, van Ruijven LJ, Brugman P, Langenbach GE. Variation of the mineral density in cortical bone may serve to keep strain amplitudes within a physiological range. Bone. 2013;55:391–399. PubMed
Hichijo N, Tanaka E, Kawai N, van Ruijven LJ, Langenbach GE. Effects of Decreased Occlusal Loading during Growth on the Mandibular Bone Characteristics. PLoS One. 2015;10:0129290. PubMed PMC
Offley SC, Guo TZ, Wei T, Clark JD, Vogel H, Lindsey DP, Jacobs CR, Yao W, Lane NE, Kingery WS. Capsaicin-sensitive sensory neurons contribute to the maintenance of trabecular bone integrity. J Bone Miner Res. 2005;20:257–267. PubMed
Lv L, Wang Y, Zhang J, Zhang T, Li S. Healing of periodontal defects and calcitonin gene related peptide expression following inferior alveolar nerve transection in rats. J Mol Histol. 2014;45:311–320. PubMed
Wang L, Banu J, McMahan CA, Kalu DN. Male rodent model of age-related bone loss in men. Bone. 2001;29:141–148. PubMed
He H, Tan Y, Yang M. Effect of substance P in mandibular osteotomies after amputation of the inferior alveolar nerve. J Oral Maxillofac Surg. 2010;68:2047–2052. PubMed
Yamashiro T, Fujiyama K, Fujiyoshi Y, Inaguma N, Takano-Yamamoto T. Inferior alveolar nerve transection inhibits increase in osteoclast appearance during experimental tooth movement. Bone. 2000;26:663–669. PubMed
Maciejewska K, Drzazga Z, Kaszuba M. Role of trace elements (Zn, Sr, Fe) in bone development:energy dispersive X-ray fluorescence study of rat bone and tooth tissue. Biofactors. 2014;40:425–435. PubMed
Buyukkaplan US, Guldag MU. Evaluation of mandibular bone mineral density using the dual-energy X-ray absorptiometry technique in edentulous subjects living in an endemic fluorosis region. Dentomaxillofac Radiol. 2012;41:405–410. PubMed PMC
Sample SJ, Behan M, Smithm L, Oldenhoff WE, Markel MD, Kalscheur VL, Hao Z, Miletic V, Muir P. Functional adaptation to loading of a single bone is neuronally regulated and involves multiple bones. J Bone Miner Res. 2008;23:1372–1381. PubMed PMC
Růžičková O. Osteoimunologie. Čas Revmatol. 2012;20:181–197.
Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, Bäckhed F, Ohlsson C. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27:1357–1367. PubMed PMC