Abrasive Waterjet (AWJ) Forces-Potential Indicators of Machining Quality
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SP2017/44, SP2018/43, SP2019/26, SP2020/45, SP2021/64
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
34203827
PubMed Central
PMC8232815
DOI
10.3390/ma14123309
PII: ma14123309
Knihovny.cz E-resources
- Keywords
- abrasive waterjet, cutting wear, deformation wear, kerf characteristics, normal force, tangential force,
- Publication type
- Journal Article MeSH
The necessity of monitoring the abrasive waterjet (AWJ) processes increases with the spreading of this tool into the machining processes. The forces produced on the workpiece during the abrasive waterjet machining can yield some valuable information. Therefore, a special waterjet-force measuring device designed and produced in the past has been used for the presented research. It was tested during the AWJ cutting processes, because they are the most common and the best described up-to-date AWJ applications. Deep studies of both the cutting process and the respective force signals led to the decision that the most appropriate indication factor is the tangential-to-normal force ratio (TNR). Three theorems concerning the TNR were formulated and investigated. The first theorem states that the TNR strongly depends on the actual-to-limit traverse speed ratio. The second theorem claims that the TNR relates to the cutting-to-deformation wear ratio inside the kerf. The third theorem states that the TNR value changes when the cutting head and the respective jet axis are tilted so that a part of the jet velocity vector projects into the traverse speed direction. It is assumed that the cutting-to-deformation wear ratio increases in a certain range of tilting angles of the cutting head. This theorem is supported by measured data and can be utilized in practice for the development of a new method for the monitoring of the abrasive waterjet cutting operations. Comparing the tilted and the non-tilted jet, we detected the increase of the TNR average value from 1.28 ± 0.16 (determined for the declination angle 20° and the respective tilting angle 10°) up to 2.02 ± 0.25 (for the declination angle 30° and the respective tilting angle of 15°). This finding supports the previously predicted and published assumptions that the tilting of the cutting head enables an increase of the cutting wear mode inside the forming kerf, making the process more efficient.
See more in PubMed
Natarajan Y., Murugesan P.K., Mohan M., Liyakath Ali Khan S.A. Abrasive Water Jet Machining process: A state of art of review. J. Mater. Process. 2020;49:271–322. doi: 10.1016/j.jmapro.2019.11.030. DOI
Axinte D.A., Karpuschewski B., Kong M.C., Beaucamp A.T., Anwar S., Miller D., Petzel M. High energy fluid jet machining (HEFJet-Mach): From scientific and technological advances to niche industrial applications. CIRP Ann. Manuf. Technol. 2014;63:751–771. doi: 10.1016/j.cirp.2014.05.001. DOI
Hashish M. A modeling study of metal-cutting with abrasive waterjets. J. Eng. Mater. Technol. ASME. 1984;106:88–100. doi: 10.1115/1.3225682. DOI
Bitter J.G.A. A study of erosion phenomena–Part I. Wear. 1963;6:5–21. doi: 10.1016/0043-1648(63)90003-6. DOI
Bitter J.G.A. A study of erosion phenomena–Part II. Wear. 1963;6:169–190. doi: 10.1016/0043-1648(63)90073-5. DOI
Finnie I., Wolak J., Kabil Y. Erosion of metals by solid particles. J. Mater. 1967;2:682–700.
Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical and Experimental Modeling of Abrasive Water Jet Cutting of Ductile Materials. J. Mater. Process. Technol. 1998;73:189–199. doi: 10.1016/S0924-0136(97)00228-8. DOI
Srinivas S., Babu N.R. An analytical model for predicting depth of cut in abrasive waterjet cutting of ductile materials considering the deflection of jet in lateral direction. Int. J. Abrasive Technol. 2009;2:259–278. doi: 10.1504/IJAT.2009.024398. DOI
Zeng J., Kim T.J. An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear. 1996;193:207–217. doi: 10.1016/0043-1648(95)06721-3. DOI
Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical Modeling of the Total Depth of Cut in Abrasive Water Jet Machining of Polycrystalline Brittle Materials. J. Mater. Process. Technol. 1998;73:206–212. doi: 10.1016/S0924-0136(97)00230-6. DOI
Shanmugam D.K., Wang J., Liu H. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. Int. J. Mach. Tools Manu. 2008;48:1527–1534. doi: 10.1016/j.ijmachtools.2008.07.001. DOI
Srinivasu D.S., Axinte D.A., Shipway P.H., Folkes J. Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int. J. Mach. Tools Manu. 2009;49:1077–1088. doi: 10.1016/j.ijmachtools.2009.07.007. DOI
Hlaváč L.M. JETCUT-software for prediction of high-energy waterjet efficiency. In: Louis H., editor. Proceedings of the 14th International Conference on Jetting Technology; Brugge, Belgium. 21–23 September 1998; London, UK: Professional Engineering Publishing Ltd.; 1998. pp. 25–37.
Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI
Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI
Chen F.L., Wang J., Lemma E., Siores E. Striation formation mechanisms on the jet cutting surface. J. Mater. Process. Technol. 2003;141:213–218. doi: 10.1016/S0924-0136(02)01120-2. DOI
Deam R.T., Lemma E., Ahmed D.H. Modelling of the abrasive water jet cutting process. Wear. 2004;257:877–891. doi: 10.1016/j.wear.2004.04.002. DOI
Fowler G., Shipway P.H., Pashby I.R. Abrasive water-jet controlled depth milling of Ti6Al4V alloy-an investigation of the role of jet-workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J. Mater. Process. Technol. 2005;161:407–414. doi: 10.1016/j.jmatprotec.2004.07.069. DOI
Cénaç F., Zitoune R., Collombet F., Deleris M. Abrasive water-jet milling of aeronautic aluminum 2024-T3. Proc. Inst. Mech. Eng. Pt. L J. Mater. Des. Appl. 2015;229:29–37.
Rabani A., Madariaga J., Bouvier C., Axinte D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016;22:99–107. doi: 10.1016/j.jmapro.2016.01.014. DOI
Yuan Y., Chen J., Gao H., Wang X. An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int. J. Adv. Manuf. Technol. 2020;107:4503–4515. doi: 10.1007/s00170-020-05294-x. DOI
Zohourkari I., Zohoor M., Annoni M. Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv. Mech. Eng. 2014:624203. doi: 10.1155/2014/624203. DOI
Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI
ShivajiRao M., Satyanarayana S. Abrasive water jet drilling of float glass and characterization of hole profile. Glass Struct. Eng. 2020;5:155–169. doi: 10.1007/s40940-019-00112-7. DOI
Liang Z.W., Xie B.H., Liao S.P., Zhou J.H. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI
Loc P.H., Shiou F.J. Abrasive water jet polishing on Zr-based bulk metallic glass. In: Lin Z.C., Huang Y.M., Chen C.C.A., Chen L.K., editors. Advanced Materials Research. Volume 579. Trans Tech Publications Ltd.; Bäch, Switzerland: 2012. pp. 211–218.
Che C.L., Huang C.Z., Wang J., Zhu H.T., Li Q.L. Theoretical model of surface roughness for polishing super hard materials with Abrasive Waterjet. In: Yao Y., Xu X., Zuo D., editors. Advances in Machining and Manufacturing Technology IX; Key Engineering Materials. Volume 375–376. Trans Tech Publications Ltd.; Bäch, Switzerland: 2008. pp. 465–469.
Martinec P. Mineralogical properties of abrasive minerals and their role in water jet cutting process. In: Rakowski Z., editor. Proceedings of the International Conference Geomechanics’91; Hradec/Ostrava, Czechoslovakia. 24–26 September 1991; Rotterdam, the Netherlands: Balkema; 1992. pp. 353–362.
Hlaváč L.M., Martinec P. Almandine garnets as abrasive material in high-energy waterjet-physical modelling of interaction, experiment and prediction. In: Louis H., editor. Proceedings of the 14th International Conference on Jetting Technology; Brugge, Belgium. 21–23 September 1998; London, UK: Professional Engineering Publishing Ltd.; 1998. pp. 211–223.
Fowler G., Pashby I.R., Shipway P.H. The effect of particle hardness and shape when abrasive water jet milling of titanium alloy Ti6Al4V. Wear. 2009;266:613–620. doi: 10.1016/j.wear.2008.06.013. DOI
Aydin G. Recycling of abrasives in abrasive water jet cutting with different types of granite. Arab. J. Geosci. 2014;7:4425–4435. doi: 10.1007/s12517-013-1113-0. DOI
Aydin G. Performance of recycling abrasives in rock cutting by abrasive water jet. J. Cent. South. Univ. 2015;22:1055–1061. doi: 10.1007/s11771-015-2616-5. DOI
Hlaváčová I.M., Geryk V. Abrasives for water-jet cutting of high-strength and thick hard materials. Int. J. Adv. Manuf. Technol. 2017;90:1217–1224. doi: 10.1007/s00170-016-9462-y. DOI
Karakurt I., Aydin G., Aydiner K. An investigation on the kerf width in abrasive waterjet cutting of granitic rocks. Arab. J. Geosci. 2014;7:2923–2932. doi: 10.1007/s12517-013-0984-4. DOI
Zhang S.J., Wu Y.Q., Wang S. An exploration of an abrasive water jet cutting front profile. Int. J. Adv. Manuf. Technol. 2015;80:1685–1688. doi: 10.1007/s00170-015-7154-7. DOI
Wu Y.Q., Zhang S.J., Wang S., Yang F.L., Tao H. Method of obtaining accurate jet lag information in abrasive water-jet machining process. Int. J. Adv. Manuf. Technol. 2015;76:1827–1835. doi: 10.1007/s00170-014-6404-4. DOI
Hlaváč L.M., Hlaváčová I.M., Gembalová L., Jonšta P. Experimental investigation of depth dependent kerf width in abrasive water cutting. In: Trieb F.H., editor. Proceedings of the 20th International Conference on Water Jetting; Graz, Austria. 20–22 October 2010; Cranfield, UK: BHR Group; 2010. pp. 459–467.
Hlaváč L.M., Hlaváčová I.M., Geryk V., Plančár Š. Investigation of the taper of kerfs cut in steels by AWJ. Int. J. Adv. Manuf. Technol. 2015;77:1811–1818. doi: 10.1007/s00170-014-6578-9. DOI
Hlaváč L.M., Hlaváčová I.M., Arleo F., Viganò F., Annoni M.P.G., Geryk V. Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precis. Eng. 2018;53:194–202. doi: 10.1016/j.precisioneng.2018.04.003. DOI
Chen M., Zhang S., Zeng J., Chen B., Xue J., Ji L. Correcting shape error on external corners caused by the jet cut-in/cut-out process in abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 2019;103:849–859. doi: 10.1007/s00170-019-03564-x. DOI
Schwartzentruber J., Spelt J.K., Papini M. Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manu. 2017;122:1–17. doi: 10.1016/j.ijmachtools.2017.05.007. DOI
Pahuja R., Ramulu M., Hashish M. Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks. Compos. Part B Eng. 2019;175:107134. doi: 10.1016/j.compositesb.2019.107134. DOI
Singh R., Singh V., Gupta T.V.K. An experimental study on surface roughness in slicing tungsten carbide with abrasive water jet machining. In: Kalamkar V.R., Monkova K., editors. Proceedings of the International Conference on Advances in Mechanical Engineering, ICAME 2020; Nagpur, India. 10–11 January 2020; Singapore: Springer; 2021. pp. 353–359.
Królczyk G.M., Królczyk J.B., Maruda R.W., Legutko S., Tomaszewski M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement. 2016;88:176–185. doi: 10.1016/j.measurement.2016.03.055. DOI
Rabani A., Marinescu I., Axinte D. Acoustic emission energy transfer rate: A method for monitoring abrasive water jet milling. Int. J. Mach. Tools Manu. 2012;61:80–89. doi: 10.1016/j.ijmachtools.2012.05.012. DOI
Hloch S., Ruggiero A. Online monitoring and analysis of hydroabrasive cutting by vibration. Adv. Mech. Eng. 2013:894561. doi: 10.1155/2013/894561. DOI
Fabian S., Salokyová Š. AWJ cutting: The technological head vibrations with different abrasive mass flow rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI
Salokyová Š. Measurement and analysis of technological head vibrations in hydro-abrasive cutting technology. Acad. J. Manuf. Eng. 2014;12:90–95.
Salokyová Š. Measurement and analysis of mass flow and feed speed impact on technological head vibrations during cutting abrasion resistant steels with abrasive water jet technology. Key Eng. Mater. 2016;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI
Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.
Vala M. The measurement of the non-setting parameters of the high pressure water jets. In: Rakowski Z., editor. Geomechanics 93. Balkema; Rotterdam, The Netherlands: 1994. pp. 333–336.
Sitek L., Vala M., Vašek J. Investigation of high pressure water jet behaviour using jet/target interaction. In: Allen N.G., editor. Proceedings of the 12th International Conference on Jet Cutting Technology; Rouen, France. 25–27 October 1994; London, UK: Mechanical Engineering Publishing Ltd.; 1994. pp. 59–66.
Foldyna J., Sitek L., Švehla B., Švehla T. Utilization of ultrasound to enhance high-speed water jet effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI
Fuchs E., Köhler H., Majschak J.-P. Measurement of the impact force and pressure of water jets under the influence of jet break-up. Chemie-Ingenieur-Technik. 2019;91:455–466. doi: 10.1002/cite.201800077. DOI
Li H.Y., Geskin E.S., Chen W.L. Investigation of forces exerted by an abrasive water jet on workpiece. In: Vijay M.M., Savanick G.A., editors. Proceedings of the 5th American Water Jet Conference; Toronto, ON, Canada. 29–31 August 1989; Ottawa, ON, Canada: St. Louis, MS, USA: National Research Council of Canada; U.S. Water Jet Technology Association; 1989. pp. 69–77.
Momber A.W. Energy transfer during the mixing of air and solid particles into a high-speed waterjet: An impact-force study. Exp. Therm. Fluid Sci. 2001;25:31–41. doi: 10.1016/S0894-1777(01)00057-7. DOI
Orbanic H., Junkar M., Bajsic I., Lebar A. An instrument for measuring abrasive water jet diameter. Int. J. Mach. Tools Manu. 2009;49:843–849. doi: 10.1016/j.ijmachtools.2009.05.008. DOI
Kliuev M., Pude F., Stirnimann J., Wegener K. Measurement of the effective waterjet diameter by means of force signals. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting—Water Jet 2019, Čeladná, Czech Republic, 20–22 November 2019. Springer; Cham, Switzerland: 2021. pp. 15–27. Lecture Notes in Mechanical Engineering.
Hlaváčová I.M., Vondra A. Future in marine fire-fighting: High pressure water mist extinguisher with abrasive water jet cutting. Nase More. 2016;63:102–107. doi: 10.17818/NM/2016/SI5. DOI
Mádr V., Lupták M., Hlaváč L. Force Sensor and Method of Force Sensing in the Process of Abrasive Water Jet. Cutting. CZ 303189. Patent No. 2012 Apr 5;
Štefek A., Hlaváč L.M., Tyč M., Barták P., Kozelský J. Remarks to abrasive waterjet (AWJ) forces measurements. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting-Water Jet 2019, Čeladná, Czech Republic, 20–22 November 2019. Springer; Cham, Switzerland: 2021. pp. 208–218. Lecture Notes in Mechanical Engineering.
Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of material structure on forces measured during abrasive waterjet (AWJ) machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC
Hlaváč L.M., Bańkowski D., Krajcarz D., Štefek A., Tyč M., Młynarczyk P. Abrasive waterjet (AWJ) forces—Indicator of cutting system malfunction. Materials. 2021;14:1683. doi: 10.3390/ma14071683. PubMed DOI PMC
Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI
Sutowski P., Sutowska M., Kapłonek W. The use of high-frequency acoustic emission analysis for in-process assessment of the surface quality of aluminium alloy 5251 in abrasive waterjet machining. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2018;232:2547–2565. doi: 10.1177/0954405417703428. DOI
Sutowska M., Kapłonek W., Pimenov D.Y., Gupta M.K., Mozammel Mia M., Sharma S. Influence of variable radius of cutting head trajectory on quality of cutting kerf in the abrasive water jet process for soda–lime glass. Materials. 2020;13:4277. doi: 10.3390/ma13194277. PubMed DOI PMC
Notes on the Abrasive Water Jet (AWJ) Machining