Abrasive Waterjet (AWJ) Forces-Indicator of Cutting System Malfunction

. 2021 Mar 29 ; 14 (7) : . [epub] 20210329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33805578

Grantová podpora
SP 018/43; SP 2019/26; SP 2020/45; SP 2021/64 Ministerstvo Školství, Mládeže a Tělovýchovy

Measurements enabling the online monitoring of the abrasive waterjet (AWJ) cutting process are still under development. This paper presents an experimental method which can be applicable for the evaluation of the AWJ cutting quality through the measurement of forces during the cutting process. The force measuring device developed and patented by our team has been used for measurement on several metal materials. The results show the dependence of the cutting to deformation force ratio on the relative traverse speed. Thus, the force data may help with a better understanding the interaction between the abrasive jet and the material, simultaneously impacting the improvement of both the theoretical and empirical models. The advanced models could substantially improve the selection of suitable parameters for AWJ cutting, milling or turning with the desired quality of product at the end of the process. Nevertheless, it is also presented that force measurements may detect some undesired effects, e.g., not fully penetrated material and/or some product distortions. In the case of a proper designing of the measuring device, the force measurement can be applied in the online monitoring of the cutting process and its continuous control.

Zobrazit více v PubMed

Axinte D.A., Karpuschewski B., Kong M.C., Beaucamp A.T., Anwar S., Miller D., Petzel M. High energy fluid jet machining (HEFJet-Mach): From scientific and technological advances to niche industrial applications. CIRP Ann. Manuf. Technol. 2014;63:751–771. doi: 10.1016/j.cirp.2014.05.001. DOI

Rabani A., Madariaga J., Bouvier C., Axinte D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016;22:99–107. doi: 10.1016/j.jmapro.2016.01.014. DOI

Zohourkari I., Zohoor M., Annoni M. Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv. Mech. Eng. 2014:624203. doi: 10.1155/2014/624203. DOI

Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI

Liang Z.W., Xie B.H., Liao S.P., Zhou J.H. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI

Loc P.H., Shiou F.J. Abrasive water jet polishing on Zr-based bulk metallic glass. In: Lin Z.C., Huang Y.M., Chen C.C.A., Chen L.K., editors. Advanced Materials Research. Volume 579. Trans Tech Publications Ltd; Bäch, Switzerland: 2012. pp. 211–218.

Hashish M. Kinetic power density in waterjet cutting; Proceedings of the 22nd International Conference on Water Jetting 2014: Advances in Current and Emerging Markets; Haarlem, The Netherlands. 3–5 September 2014; Cranfield, UK: BHR Group Limited; 2014. pp. 27–42.

Ramulu M., Briggs T., Hashish M. Quality and surface integrity of waterjet machined automotive composites; Proceedings of the 22nd International Conference on Water Jetting 2014: Advances in Current and Emerging Markets; Haarlem, The Netherlands. 3–5 September 2014; Cranfield, UK: BHR Group Limited; 2014. pp. 197–211.

Królczyk G.M., Królczyk J.B., Maruda R.W., Legutko S., Tomaszewski M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement. 2016;88:176–185. doi: 10.1016/j.measurement.2016.03.055. DOI

Rabani A., Marinescu I., Axinte D. Acoustic emission energy transfer rate: A method for monitoring abrasive water jet milling. Int. J. Mach. Tools Manu. 2012;61:80–89. doi: 10.1016/j.ijmachtools.2012.05.012. DOI

Pahuja R., Ramulu M. Abrasive waterjet process monitoring through acoustic and vibration signals; Proceedings of the 24th International Conference on Water Jetting 2018; Manchester, UK. 5–7 September 2018; Cranfield, UK: BHR Group Limited; 2018. pp. 75–87.

Fabian S., Salokyová Š. AWJ cutting: The technological head vibrations with different abrasive mass flow rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI

Salokyová Š. Measurement and analysis of technological head vibrations in hydro-abrasive cutting technology. Acad. J. Manuf. Eng. 2014;12:90–95.

Salokyová Š. Measurement and analysis of mass flow and feed speed impact on technological head vibrations during cutting abrasion resistant steels with abrasive water jet technology. Key Eng. Mater. 2016;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI

Hloch S., Ruggiero A. Online monitoring and analysis of hydroabrasive cutting by vibration. Adv. Mech. Eng. 2013:894561. doi: 10.1155/2013/894561. DOI

Hreha P., Hloch S. Potential use of vibration for metrology and detection of surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2013;7:135–151. doi: 10.1504/IJSURFSE.2013.053699. DOI

Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI

Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.

Vala M. The measurement of the non-setting parameters of the high pressure water jets. In: Rakowski Z., editor. Geomechanics 93. Balkema; Rotterdam, The Netherlands: 1994. pp. 333–336.

Sitek L., Vala M., Vašek J. Investigation of high pressure water jet behaviour using jet/target interaction. In: Allen N.G., editor. Proceedings of the 12th International Conference on Jet Cutting Technology; Rouen, France. 25–27 October 1994; London, UK: Mech. Eng. Pub. Ltd.; 1994. pp. 59–66.

Orbanic H., Junkar M., Bajsic I., Lebar A. An instrument for measuring abrasive water jet diameter. Int. J. Mach. Tools Manu. 2009;49:843–849. doi: 10.1016/j.ijmachtools.2009.05.008. DOI

Foldyna J., Sitek L., Švehla B., Švehla T. Utilization of ultrasound to enhance high-speed water jet effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI

Li H.Y., Geskin E.S., Chen W.L. Investigation of forces exerted by an abrasive water jet on workpiece. In: Vijay M.M., Savanick G.A., editors. Proceedings of the 5th American Water Jet Conference; Toronto, ON, Canada. 29–31 August 1989; Ottawa, ON, Canada: St. Louis, MI, USA: National Research Council of Canada; U.S. Water Jet Technology Association; 1989. pp. 69–77.

Momber A.W. Energy transfer during the mixing of air and solid particles into a high-speed waterjet: An impact-force study. Exp. Therm. Fluid Sci. 2001;25:31–41. doi: 10.1016/S0894-1777(01)00057-7. DOI

Hlaváčová I.M., Vondra A. Future in marine fire-fighting: High pressure water mist extinguisher with abrasive water jet cutting. Nase More. 2016;63:102–107. doi: 10.17818/NM/2016/SI5. DOI

Chillman A., Hashish M., Ramulu M. Waterjet impact force evaluations at pressures up to 600 MPa; Proceedings of the 23rd International Conference on Water Jetting; Seattle, UK. 16–18 November 2016; Cranfield, UK: BHR Group Limited; 2016. pp. 301–313.

Fuchs E., Köhler H., Majschak J.-P. Measurement of the impact force and pressure of water jets under the influence of jet break-up. Chemie-Ingenieur-Technik. 2019;91:455–466. doi: 10.1002/cite.201800077. DOI

Mitchell B.R., Klewicki J.C., Korkolis Y.P., Kinsey B.L. Normal impact force of Rayleigh jets. Phys. Rev. Fluids. 2019;4:113603. doi: 10.1103/PhysRevFluids.4.113603. DOI

Wala T., Lis K. The experimental method of determining the forces operating during the abrasive waterjet cutting process–A mathematical model of the jet deviation angle. In: Krolczyk G.M., Nieslony P., Krolczyk J., editors. Proceedings of the International Conference on Industrial Measurements in Machining, IMM; Opole, Poland. 11–12 September 2019; Cham, Switzerland: Springer; 2020. pp. 236–245. Lecture Notes in Mechanical Engineering.

Kliuev M., Pude F., Stirnimann J., Wegener K. Measurement of the effective waterjet diameter by means of force signals. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting—Water Jet 2019; Čeladná, Czech Republic. 20–22 November 2019; Cham, Switzerland: Springer; 2021. pp. 15–27. Lecture Notes in Mechanical Engineering.

Patent authors: Mádr V., Lupták M., Hlaváč L. Force Sensor and Method of Force Sensing in the Process of Abrasive Water Jet. No. CZ 303189. Cutting. Patent. 2012 Apr 5;

Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of material structure on forces measured during abrasive waterjet (AWJ) machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC

Štefek A., Hlaváč L.M., Tyč M., Barták P., Kozelský J. Remarks to abrasive waterjet (AWJ) forces measurements. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting-Water Jet 2019; Čeladná, Czech Republic. 20–22 November 2019; Cham, Switzerland: Springer; 2021. pp. 208–218. Lecture Notes in Mechanical Engineering.

Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI

Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI

Hlaváč L.M., Hlaváčová I.M., Geryk V., Plančár Š. Investigation of the taper of kerfs cut in steels by AWJ. Int. J. Adv. Manuf. Technol. 2015;77:1811–1818. doi: 10.1007/s00170-014-6578-9. DOI

Hlaváč L.M., Hlaváčová I.M., Arleo F., Viganò F., Annoni M.P.G., Geryk V. Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precis. Eng. 2018;53:194–202. doi: 10.1016/j.precisioneng.2018.04.003. DOI

Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...