Abrasive Waterjet (AWJ) Forces-Indicator of Cutting System Malfunction
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
SP 018/43; SP 2019/26; SP 2020/45; SP 2021/64
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
33805578
PubMed Central
PMC8036931
DOI
10.3390/ma14071683
PII: ma14071683
Knihovny.cz E-resources
- Keywords
- abrasive waterjet, cutting, force measurement, force ratio, metals,
- Publication type
- Journal Article MeSH
Measurements enabling the online monitoring of the abrasive waterjet (AWJ) cutting process are still under development. This paper presents an experimental method which can be applicable for the evaluation of the AWJ cutting quality through the measurement of forces during the cutting process. The force measuring device developed and patented by our team has been used for measurement on several metal materials. The results show the dependence of the cutting to deformation force ratio on the relative traverse speed. Thus, the force data may help with a better understanding the interaction between the abrasive jet and the material, simultaneously impacting the improvement of both the theoretical and empirical models. The advanced models could substantially improve the selection of suitable parameters for AWJ cutting, milling or turning with the desired quality of product at the end of the process. Nevertheless, it is also presented that force measurements may detect some undesired effects, e.g., not fully penetrated material and/or some product distortions. In the case of a proper designing of the measuring device, the force measurement can be applied in the online monitoring of the cutting process and its continuous control.
See more in PubMed
Axinte D.A., Karpuschewski B., Kong M.C., Beaucamp A.T., Anwar S., Miller D., Petzel M. High energy fluid jet machining (HEFJet-Mach): From scientific and technological advances to niche industrial applications. CIRP Ann. Manuf. Technol. 2014;63:751–771. doi: 10.1016/j.cirp.2014.05.001. DOI
Rabani A., Madariaga J., Bouvier C., Axinte D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016;22:99–107. doi: 10.1016/j.jmapro.2016.01.014. DOI
Zohourkari I., Zohoor M., Annoni M. Investigation of the effects of machining parameters on material removal rate in abrasive waterjet turning. Adv. Mech. Eng. 2014:624203. doi: 10.1155/2014/624203. DOI
Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI
Liang Z.W., Xie B.H., Liao S.P., Zhou J.H. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI
Loc P.H., Shiou F.J. Abrasive water jet polishing on Zr-based bulk metallic glass. In: Lin Z.C., Huang Y.M., Chen C.C.A., Chen L.K., editors. Advanced Materials Research. Volume 579. Trans Tech Publications Ltd; Bäch, Switzerland: 2012. pp. 211–218.
Hashish M. Kinetic power density in waterjet cutting; Proceedings of the 22nd International Conference on Water Jetting 2014: Advances in Current and Emerging Markets; Haarlem, The Netherlands. 3–5 September 2014; Cranfield, UK: BHR Group Limited; 2014. pp. 27–42.
Ramulu M., Briggs T., Hashish M. Quality and surface integrity of waterjet machined automotive composites; Proceedings of the 22nd International Conference on Water Jetting 2014: Advances in Current and Emerging Markets; Haarlem, The Netherlands. 3–5 September 2014; Cranfield, UK: BHR Group Limited; 2014. pp. 197–211.
Królczyk G.M., Królczyk J.B., Maruda R.W., Legutko S., Tomaszewski M. Metrological changes in surface morphology of high-strength steels in manufacturing processes. Measurement. 2016;88:176–185. doi: 10.1016/j.measurement.2016.03.055. DOI
Rabani A., Marinescu I., Axinte D. Acoustic emission energy transfer rate: A method for monitoring abrasive water jet milling. Int. J. Mach. Tools Manu. 2012;61:80–89. doi: 10.1016/j.ijmachtools.2012.05.012. DOI
Pahuja R., Ramulu M. Abrasive waterjet process monitoring through acoustic and vibration signals; Proceedings of the 24th International Conference on Water Jetting 2018; Manchester, UK. 5–7 September 2018; Cranfield, UK: BHR Group Limited; 2018. pp. 75–87.
Fabian S., Salokyová Š. AWJ cutting: The technological head vibrations with different abrasive mass flow rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI
Salokyová Š. Measurement and analysis of technological head vibrations in hydro-abrasive cutting technology. Acad. J. Manuf. Eng. 2014;12:90–95.
Salokyová Š. Measurement and analysis of mass flow and feed speed impact on technological head vibrations during cutting abrasion resistant steels with abrasive water jet technology. Key Eng. Mater. 2016;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI
Hloch S., Ruggiero A. Online monitoring and analysis of hydroabrasive cutting by vibration. Adv. Mech. Eng. 2013:894561. doi: 10.1155/2013/894561. DOI
Hreha P., Hloch S. Potential use of vibration for metrology and detection of surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2013;7:135–151. doi: 10.1504/IJSURFSE.2013.053699. DOI
Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI
Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.
Vala M. The measurement of the non-setting parameters of the high pressure water jets. In: Rakowski Z., editor. Geomechanics 93. Balkema; Rotterdam, The Netherlands: 1994. pp. 333–336.
Sitek L., Vala M., Vašek J. Investigation of high pressure water jet behaviour using jet/target interaction. In: Allen N.G., editor. Proceedings of the 12th International Conference on Jet Cutting Technology; Rouen, France. 25–27 October 1994; London, UK: Mech. Eng. Pub. Ltd.; 1994. pp. 59–66.
Orbanic H., Junkar M., Bajsic I., Lebar A. An instrument for measuring abrasive water jet diameter. Int. J. Mach. Tools Manu. 2009;49:843–849. doi: 10.1016/j.ijmachtools.2009.05.008. DOI
Foldyna J., Sitek L., Švehla B., Švehla T. Utilization of ultrasound to enhance high-speed water jet effects. Ultrason. Sonochem. 2004;11:131–137. doi: 10.1016/j.ultsonch.2004.01.008. PubMed DOI
Li H.Y., Geskin E.S., Chen W.L. Investigation of forces exerted by an abrasive water jet on workpiece. In: Vijay M.M., Savanick G.A., editors. Proceedings of the 5th American Water Jet Conference; Toronto, ON, Canada. 29–31 August 1989; Ottawa, ON, Canada: St. Louis, MI, USA: National Research Council of Canada; U.S. Water Jet Technology Association; 1989. pp. 69–77.
Momber A.W. Energy transfer during the mixing of air and solid particles into a high-speed waterjet: An impact-force study. Exp. Therm. Fluid Sci. 2001;25:31–41. doi: 10.1016/S0894-1777(01)00057-7. DOI
Hlaváčová I.M., Vondra A. Future in marine fire-fighting: High pressure water mist extinguisher with abrasive water jet cutting. Nase More. 2016;63:102–107. doi: 10.17818/NM/2016/SI5. DOI
Chillman A., Hashish M., Ramulu M. Waterjet impact force evaluations at pressures up to 600 MPa; Proceedings of the 23rd International Conference on Water Jetting; Seattle, UK. 16–18 November 2016; Cranfield, UK: BHR Group Limited; 2016. pp. 301–313.
Fuchs E., Köhler H., Majschak J.-P. Measurement of the impact force and pressure of water jets under the influence of jet break-up. Chemie-Ingenieur-Technik. 2019;91:455–466. doi: 10.1002/cite.201800077. DOI
Mitchell B.R., Klewicki J.C., Korkolis Y.P., Kinsey B.L. Normal impact force of Rayleigh jets. Phys. Rev. Fluids. 2019;4:113603. doi: 10.1103/PhysRevFluids.4.113603. DOI
Wala T., Lis K. The experimental method of determining the forces operating during the abrasive waterjet cutting process–A mathematical model of the jet deviation angle. In: Krolczyk G.M., Nieslony P., Krolczyk J., editors. Proceedings of the International Conference on Industrial Measurements in Machining, IMM; Opole, Poland. 11–12 September 2019; Cham, Switzerland: Springer; 2020. pp. 236–245. Lecture Notes in Mechanical Engineering.
Kliuev M., Pude F., Stirnimann J., Wegener K. Measurement of the effective waterjet diameter by means of force signals. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting—Water Jet 2019; Čeladná, Czech Republic. 20–22 November 2019; Cham, Switzerland: Springer; 2021. pp. 15–27. Lecture Notes in Mechanical Engineering.
Patent authors: Mádr V., Lupták M., Hlaváč L. Force Sensor and Method of Force Sensing in the Process of Abrasive Water Jet. No. CZ 303189. Cutting. Patent. 2012 Apr 5;
Hlaváč L.M., Štefek A., Tyč M., Krajcarz D. Influence of material structure on forces measured during abrasive waterjet (AWJ) machining. Materials. 2020;13:3878. doi: 10.3390/ma13173878. PubMed DOI PMC
Štefek A., Hlaváč L.M., Tyč M., Barták P., Kozelský J. Remarks to abrasive waterjet (AWJ) forces measurements. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Proceedings of the Advances in Water Jetting-Water Jet 2019; Čeladná, Czech Republic. 20–22 November 2019; Cham, Switzerland: Springer; 2021. pp. 208–218. Lecture Notes in Mechanical Engineering.
Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI
Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI
Hlaváč L.M., Hlaváčová I.M., Geryk V., Plančár Š. Investigation of the taper of kerfs cut in steels by AWJ. Int. J. Adv. Manuf. Technol. 2015;77:1811–1818. doi: 10.1007/s00170-014-6578-9. DOI
Hlaváč L.M., Hlaváčová I.M., Arleo F., Viganò F., Annoni M.P.G., Geryk V. Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precis. Eng. 2018;53:194–202. doi: 10.1016/j.precisioneng.2018.04.003. DOI
Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI
Temperature Measurement during Abrasive Water Jet Machining (AWJM)
Abrasive Waterjet (AWJ) Forces-Potential Indicators of Machining Quality