• This record comes from PubMed

Notes on the Abrasive Water Jet (AWJ) Machining

. 2021 Nov 19 ; 14 (22) : . [epub] 20211119

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
SP2017/44, SP2021/19 Ministry of Education, Youth and Sports of the Czech Republic

The aim of the research was to investigate changes of abrasive grains on metals observing the kerf walls produced by the Abrasive Water Jet (AWJ). The microscopy observations of the sidewalls of kerfs cut by the AWJ in several metal materials with an identical thickness of 10 mm are presented. The observed sizes of abrasive grains were compared with the results of research aimed at the disintegration of the abrasive grains during the mixing process in the cutting head during the injection AWJ creation. Some correlations were discovered and verified. The kerf walls observations show the size of material disintegration caused by the individual abrasive grains and also indicate the size of these grains. One part of this short communication is devoted to a critical look at some of the conclusions of the older published studies, namely regarding the correlation of the number of interacting particles with the acoustic emissions measured on cut materials. The discussion is aimed at the abrasive grain size after the mixing process and changes of this size in the interaction with the target material.

See more in PubMed

Hashish M. Experimental Studies of Cutting with Abrasive Waterjets. In: Summers D.A., Haston F.F., editors. Proceedings of the 2nd U.S. Water Jet Conference; Rolla, MI, USA. 24–26 May 1983; Rolla, MI, USA: University of Missouri-Rolla; 1983. pp. 379–389.

Hashish M. A Modeling Study of Metal Cutting With Abrasive Waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI

Hashish M. A Model for Abrasive-Waterjet (AWJ) Machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI

Zeng J., Kim T.J. An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear. 1996;193:207–217. doi: 10.1016/0043-1648(95)06721-3. DOI

Paul S., Hoogstrate A., van Luttervelt C., Kals H. Analytical and experimental modelling of the abrasive water jet cutting of ductile materials. J. Mater. Process. Technol. 1998;73:189–199. doi: 10.1016/S0924-0136(97)00228-8. DOI

Paul S., Hoogstrate A., van Luttervelt C., Kals H. Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material. J. Mater. Process. Technol. 1998;73:206–212. doi: 10.1016/S0924-0136(97)00230-6. DOI

Hashish M. Turning with Abrasive-Waterjets—A First Investigation. J. Eng. Ind. 1987;109:281–290. doi: 10.1115/1.3187130. DOI

Paul S., Hoogstrate A., Van Luttervelt C., Kals H. An experimental investigation of rectangular pocket milling with abrasive water jet. J. Mater. Process. Technol. 1998;73:179–188. doi: 10.1016/S0924-0136(97)00227-6. DOI

Hlaváč L.M., Martinec P. Almandine garnets as abrasive material in high-energy waterjet—Physical modelling of interaction, experiment and prediction. In: Louis H., editor. Proceedings of the 14th International Conference on Jetting Technology; Brugge, Belgium. 21–23 September 1998; London, UK: Prof. Eng. Pub. Ltd.; 1998. pp. 211–223.

Hlaváč L.M., Hlaváčová I.M., Vašek J. TRANS-ACTIONS of the VSB-Technical University of Ostrava, Engineering Series. Volume 53. VSB-Technical University of Ostrava; Ostrava, Czech Republic: 2007. Milling of materials by water jets—Acting of liquid jet in the cutting head; pp. 73–84.

Hlaváč L.M., Hlaváčová I.M., Jandačka P., Zegzulka J., Viliamsová J., Vašek J., Mádr V. Comminution of material particles by water jets—Influence of the inner shape of the mixing chamber. Int. J. Miner. Process. 2010;95:25–29. doi: 10.1016/j.minpro.2010.03.003. DOI

Jandacka P., Hlavac L.M., Madr V., Sancer J., Stanek F. Measurement of Specific Fracture Energy and Surface Tension of Brittle Materials in Powder Form. Int. J. Fract. 2009;159:103–110. doi: 10.1007/s10704-009-9376-x. DOI

Hlaváč L.M., Hlaváčová I.M., Vašek J., Jandačka P., Zegzulka J., Viliamsová J., Mádr V., Uhlář R. Investigation of Samples from the High-Velocity Water Jet Driven Micro/Nano Particle Collider. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. PVP. 2009;43680:119–126.

Galecki G., Sen S., Akar G., Li Y. Parametric Evaluation of Coal Comminution by Waterjets. Int. J. Coal Prep. Util. 2013;33:36–46. doi: 10.1080/19392699.2012.756812. DOI

Hreha P., Radvanská A., Hloch S., Peržel V., Królczyk G., Monková K. Determination of vibration frequency depending on abrasive mass flow rate during abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 2015;77:763–774. doi: 10.1007/s00170-014-6497-9. DOI

Singh R., Singh V., Gupta T.V.K. Lecture Notes in Mechanical Engineering. Springer; Singapore: 2020. An Experimental Study on Surface Roughness in Slicing Tungsten Carbide with Abrasive Water Jet Machining; pp. 353–359.

Hlaváčová I., Geryk V. Abrasives for water-jet cutting of high-strength and thick hard materials. Int. J. Adv. Manuf. Technol. 2017;90:1217–1224. doi: 10.1007/s00170-016-9462-y. DOI

Schwartzentruber J., Spelt J., Papini M. Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manuf. 2017;122:1–17. doi: 10.1016/j.ijmachtools.2017.05.007. DOI

Zohourkari I., Zohoor M., Annoni M. Investigation of the Effects of Machining Parameters on Material Removal Rate in Abrasive Waterjet Turning. Adv. Mech. Eng. 2014;6:24203. doi: 10.1155/2014/624203. DOI

Srivastava A.K., Nag A., Dixit A.R., Tiwari S., Srivastava V.S. Lecture Notes in Mechanical Engineering. Springer; Singapore: 2018. Parametric Study During Abrasive Water Jet Turning of Hybrid Metal Matrix Composite; pp. 72–84.

Cenac F., Zitoune R., Collombet F., Deleris M. Abrasive water-jet milling of aeronautic aluminum 2024-T3. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015;229:29–37. doi: 10.1177/1464420713499288. DOI

Yuan Y., Chen J., Gao H., Wang X. An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int. J. Adv. Manuf. Technol. 2020;107:4503–4515. doi: 10.1007/s00170-020-05294-x. DOI

Shivajirao M., Satyanarayana S. Abrasive water jet drilling of float glass and characterization of hole profile. Glas. Struct. Eng. 2020;5:155–169. doi: 10.1007/s40940-019-00112-7. DOI

Pahuja R., Ramulu M., Hashish M. Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks. Compos. Part B Eng. 2019;175:107134. doi: 10.1016/j.compositesb.2019.107134. DOI

Liang Z.W., Xie B.H., Liao S.P., Zhou J.H. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015;80:887–905. doi: 10.1007/s00170-015-7027-0. DOI

Schwartzentruber J., Papini M. Abrasive waterjet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI

Loc P.H., Shiou F.J. Abrasive Water Jet Polishing on Zr-Based Bulk Metallic Glass. In: Lin Z.C., Huang Y.M., Chen C.C.A., Chen L.K., editors. Advanced Manufacturing Focusing on Multi-Disciplinary Technologies. Volume 579. Trans Tech Publications Ltd.; Zurich, Switzerland: 2012. pp. 211–218.

Haghbin N., Spelt J.K., Papini M. Abrasive water jet micro-machining of channels in metals: Model to predict high as-pect-ratio channel profiles for submerged and unsubmerged machining. J. Mater. Process. Technol. 2015;222:399–409. doi: 10.1016/j.jmatprotec.2015.03.026. DOI

Lari M.S., Papini M. Inverse methods to gradient etch three-dimensional features with prescribed topographies using abrasive jet micro-machining: Part I—Modeling. Precis. Eng. 2016;45:272–284. doi: 10.1016/j.precisioneng.2016.03.004. DOI

Martinec P. Mineralogical properties of abrasive minerals and their role in water jet cutting process. In: Rakowski Z., editor. Proceedings of the International Conference Geomechanics’91; Hradec/Ostrava, Czechoslovakia. 24–26 September 1991; Rotterdam, The Netherlands: Balkema; 1992. pp. 353–362.

Fowler G., Pashby I., Shipway P. The effect of particle hardness and shape when abrasive water jet milling titanium alloy Ti6Al4V. Wear. 2009;266:613–620. doi: 10.1016/j.wear.2008.06.013. DOI

Boud F., Carpenter C., Folkes J., Shipway P.H. Abrasive water jet cutting of a titanium alloy: The influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality. J. Mater. Process. Technol. 2010;210:2197–2205. doi: 10.1016/j.jmatprotec.2010.08.006. DOI

Servátka M., Fabian S. Experimental Research and Analysis of Selected Technological Parameters on the Roughness of Steel Area Surface HARDOX 500 with Thickness 40mm Cut by AWJ Technology. Appl. Mech. Mater. 2013;308:13–17. doi: 10.4028/www.scientific.net/AMM.308.13. DOI

Narayanan C., Balz R., Weiss D.A., Heiniger K.C. Modelling of abrasive particle energy in water jet machining. J. Mater. Process. Technol. 2013;213:2201–2210. doi: 10.1016/j.jmatprotec.2013.06.020. DOI

Aydin G. Recycling of abrasives in abrasive water jet cutting with different types of granite. Arab. J. Geosci. 2014;7:4425–4435. doi: 10.1007/s12517-013-1113-0. DOI

Aydin G. Performance of recycling abrasives in rock cutting by abrasive water jet. J. Cent. South Univ. 2015;22:1055–1061. doi: 10.1007/s11771-015-2616-5. DOI

Salokyová Š. Measurement and analysis of mass flow and feed speed impact on technological head vibrations during cutting abrasion resistant steels with abrasive water jet technology. Key Eng. Mater. 2016;669:243–250. doi: 10.4028/www.scientific.net/KEM.669.243. DOI

Ahmed D.H., Naser J., Deam R.T. Particles impact characteristics on cutting surface during the abrasive water jet machining: Numerical study. J. Mater. Process. Technol. 2016;232:116–130. doi: 10.1016/j.jmatprotec.2016.01.032. DOI

Jankovic P., Radovanovic M., Baralic J., Nedic B. Prediction model of surface roughness in abrasive water jet cutting of aluminium alloy. J. Balk. Tribol. Assoc. 2013;19:585–595.

Hreha P., Hloch S. Potential use of vibration for metrology and detection of surface topography created by abrasive waterjet. Int. J. Surf. Sci. Eng. 2013;7:135. doi: 10.1504/IJSURFSE.2013.053699. DOI

Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI

Strnadel B., Hlaváč L., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI

Hlaváč L.M., Annoni M.P.G., Hlaváčová I.M., Arleo F., Viganò F., Štefek A. Abrasive Waterjet (AWJ) Forces—Potential Indicators of Machining Quality. Materials. 2021;14:3309. doi: 10.3390/ma14123309. PubMed DOI PMC

Hlaváč L. Revised Model of Abrasive Water Jet Cutting for Industrial Use. Materials. 2021;14:4032. doi: 10.3390/ma14144032. PubMed DOI PMC

Kempny M., Bárta O., Hlavac L., Buchar J. Proceedings of the METAL 2019 Conference Proeedings. TANGER Ltd.; Greensboro, NC, USA: 2019. Optimalization of sintering conditions for Tungsten Heavy Alloy; pp. 1363–1368.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...