Broad-Spectrum Antiviral Activity of 3'-Deoxy-3'-Fluoroadenosine against Emerging Flaviviruses
Language English Country United States Media electronic-print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
33229424
PubMed Central
PMC7848998
DOI
10.1128/aac.01522-20
PII: AAC.01522-20
Knihovny.cz E-resources
- Keywords
- 3′-deoxy-3′-fluoroadenosine, antiviral activity, cytotoxicity, flavivirus, mouse model, nucleoside analogue, tick-borne encephalitis virus,
- MeSH
- Antiviral Agents pharmacology MeSH
- Deoxyadenosines pharmacology MeSH
- Zika Virus Infection * MeSH
- Mice MeSH
- Prospective Studies MeSH
- Virus Replication MeSH
- Zika Virus * MeSH
- Encephalitis Viruses, Tick-Borne * MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- 3'-fluoro-3'-deoxyadenosine MeSH Browser
- Antiviral Agents MeSH
- Deoxyadenosines MeSH
Emerging flaviviruses are causative agents of severe and life-threatening diseases, against which no approved therapies are available. Among the nucleoside analogues, which represent a promising group of potentially therapeutic compounds, fluorine-substituted nucleosides are characterized by unique structural and functional properties. Despite having first been synthesized almost 5 decades ago, they still offer new therapeutic opportunities as inhibitors of essential viral or cellular enzymes active in nucleic acid replication/transcription or nucleoside/nucleotide metabolism. Here, we report evaluation of the antiflaviviral activity of 28 nucleoside analogues, each modified with a fluoro substituent at different positions of the ribose ring and/or heterocyclic nucleobase. Our antiviral screening revealed that 3'-deoxy-3'-fluoroadenosine exerted a low-micromolar antiviral effect against tick-borne encephalitis virus (TBEV), Zika virus, and West Nile virus (WNV) (EC50 values from 1.1 ± 0.1 μM to 4.7 ± 1.5 μM), which was manifested in host cell lines of neural and extraneural origin. The compound did not display any measurable cytotoxicity up to concentrations of 25 μM but had an observable cytostatic effect, resulting in suppression of cell proliferation at concentrations of >12.5 μM. Novel approaches based on quantitative phase imaging using holographic microscopy were developed for advanced characterization of antiviral and cytotoxic profiles of 3'-deoxy-3'-fluoroadenosine in vitro In addition to its antiviral activity in cell cultures, 3'-deoxy-3'-fluoroadenosine was active in vivo in mouse models of TBEV and WNV infection. Our results demonstrate that fluoro-modified nucleosides represent a group of bioactive molecules with excellent potential to serve as prospective broad-spectrum antivirals in antiviral research and drug development.
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czech Republic
Department of Experimental Biology Masaryk University Brno Czech Republic
Department of Pathological Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Physiology Faculty of Medicine Masaryk University Brno Czech Republic
Department of Virology Veterinary Research Institute Brno Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Rega Institute for Medical Research KU Leuven Leuven Belgium
See more in PubMed
Baier A 2011. Flaviviral infections and potential targets for antiviral therapy, p 89–104. In Ruzek D (ed), Flavivirus encephalitis. InTech, Rijeka, Croatia.
Pierson TC, Diamond MS. 2020. The continued threat of emerging flaviviruses. Nat Microbiol 5:796–812. doi:10.1038/s41564-020-0714-0. PubMed DOI PMC
De Clercq E 2011. A 40-year journey in search of selective antiviral chemotherapy. Annu Rev Pharmacol Toxicol 51:1–24. doi:10.1146/annurev-pharmtox-010510-100228. PubMed DOI
Eyer L, Nencka R, de Clercq E, Seley-Radtke K, Růžek D. 2018. Nucleoside analogs as a rich source of antiviral agents active against arthropod-borne flaviviruses. Antivir Chem Chemother 26:2040206618761299. doi:10.1177/2040206618761299. PubMed DOI PMC
Niu G, Tan H. 2015. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends Microbiol 23:110–119. doi:10.1016/j.tim.2014.10.007. PubMed DOI
Andriole VT 1999. Current and future antifungal therapy: new targets for antifungal agents. J Antimicrob Chemother 44:151–162. doi:10.1093/jac/44.2.151. PubMed DOI
Wataya Y, Hiraoka O, Sonobe Y, Yoshioka A, Matsuda A, Miyasaka T, Saneyoshi M, Ueda T. 1984. Anti-parasite activity of nucleoside analogues in Leishmania tropica promastigotes. Nucleic Acids Symp Ser (Oxf) 15:69–71. PubMed
Wataya Y, Satake H, Hiraoka O, Aji T, Morishige K, Kimura JY, Ishii A, Matsuda A, Ueda T, Fukukawa K. 1986. Anti-parasite activity of nucleoside analogues: the metabolism of carbocyclic inosine in promastigotes of Leishmania tropica and Leishmania donovani and its activity against amastigotes of Leishmania donovani in vitro. Nucleic Acids Symp Ser (Oxf) 17:149–151. PubMed
Guinan M, Benckendorff C, Smith M, Miller GJ. 2020. Recent advances in the chemical synthesis and evaluation of anticancer nucleoside analogues. Molecules 25:2050. doi:10.3390/molecules25092050. PubMed DOI PMC
Miura S, Izuta S. 2004. DNA polymerases as targets of anticancer nucleosides. Curr Drug Targets 5:191–195. doi:10.2174/1389450043490578. PubMed DOI
De Clercq E, Neyts J. 2009. Antiviral agents acting as DNA or RNA chain terminators. Handb Exp Pharmacol 189:53–84. doi:10.1007/978-3-540-79086-0_3. PubMed DOI
Chen H, Liu L, Jones SA, Banavali N, Kass J, Li Z, Zhang J, Kramer LD, Ghosh AK, Li H. 2013. Selective inhibition of the West Nile virus methyltransferase by nucleoside analogs. Antiviral Res 97:232–239. doi:10.1016/j.antiviral.2012.12.012. PubMed DOI PMC
Vernekar SK, Qiu L, Zhang J, Kankanala J, Li H, Geraghty RJ, Wang Z. 2015. 5 '-Silylated 3 '-1,2,3-triazolyl thymidine analogues as inhibitors of West Nile virus and Dengue virus. J Med Chem 58:4016–4028. doi:10.1021/acs.jmedchem.5b00327. PubMed DOI PMC
Leyssen P, Balzarini J, De Clercq E, Neyts J. 2005. The predominant mechanism by which ribavirin exerts its antiviral activity in vitro against flaviviruses and paramyxoviruses is mediated by inhibition of inosine monophosphate dehydrogenase. J Virol 79:1943–1947. doi:10.1128/JVI.79.3.1943-1947.2005. PubMed DOI PMC
Crotty S, Cameron CE, Andino R. 2001. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A 98:6895–6900. doi:10.1073/pnas.111085598. PubMed DOI PMC
Graci JD, Cameron CE. 2002. Quasispecies, error catastrophe, and the antiviral activity of ribavirin. Virology 298:175–180. doi:10.1006/viro.2002.1487. PubMed DOI
Weiland O, Milich DR, S√§Llberg M, Hultgren C. 1998. The antiviral compound ribavirin modulates the T helper (Th)1/Th2 subset balance in hepatitis B and C virus-specific immune responses. J Gen Virol 79:2381–2391. doi:10.1099/0022-1317-79-10-2381. PubMed DOI
Seley-Radtke KL, Yates MK. 2018. The evolution of nucleoside analogue antivirals: a review for chemists and non-chemists. 2018. Part 1: early structural modifications to the nucleoside scaffold. Antiviral Res 154:66–86. doi:10.1016/j.antiviral.2018.04.004. PubMed DOI PMC
Yates MK, Seley-Radtke KL. 2019. The evolution of antiviral nucleoside analogues: a review for chemists and non-chemists. Part II: complex modifications to the nucleoside scaffold. Antiviral Res 162:5–21. doi:10.1016/j.antiviral.2018.11.016. PubMed DOI PMC
Liu P, Sharon A, Chu CK. 2008. Fluorinated nucleosides: synthesis and biological implication. J Fluor Chem 129:743–766. doi:10.1016/j.jfluchem.2008.06.007. PubMed DOI PMC
Wojtowicz-Rajchel H 2012. Synthesis and applications of fluorinated nucleoside analogues. J Fluor Chem 143:11–48. doi:10.1016/j.jfluchem.2012.06.026. DOI
Saenger W 1984. Defining terms for the nucleic acids, p 9–28. In Cantor CR (ed), Principles of nucleic acid structure, Springer-Verlag Inc, New York.
Ikeda H, Fernandez R, Wilk A, Barchi JJ, Jr, Huang X, Marquez VE. 1998. The effect of two antipodal fluorine-induced sugar puckers on the conformation and stability of the Dickerson-Drew dodecamer duplex [d(CGCGAATTCGCG)]2. Nucleic Acids Res 26:2237–2244. doi:10.1093/nar/26.9.2237. PubMed DOI PMC
Park BK, Kitteringham NR, O'Neill PM. 2001. Metabolism of fluorine-containing drugs. Annu Rev Pharmacol Toxicol 41:443–470. doi:10.1146/annurev.pharmtox.41.1.443. PubMed DOI
De Clercq E 2010. Historical perspectives in the development of antiviral agents against poxviruses. Viruses 2:1322–1339. doi:10.3390/v2061322. PubMed DOI PMC
Whitley RJ 1996. The past as prelude to the future: history, status, and future of antiviral drugs. Ann Pharmacother 30:967–971. doi:10.1177/106002809603000911. PubMed DOI
Kaufman HE, Heidelberger C. 1964. Therapeutic antiviral action of 5-trifluoromethyl-2′-deoxyuridine in herpes simplex keratitis. Science 145:585–586. doi:10.1126/science.145.3632.585. PubMed DOI
Hertel LW, Boder GB, Kroin JS, Rinzel SM, Poore GA, Todd GC, Grindey GB. 1990. Evaluation of the antitumor activity of gemcitabine (2',2'-difluoro-2'-deoxycytidine). Cancer Res 50:4417–4422. PubMed
Jin C, Zhang H, Zou J, Liu Y, Zhang L, Li F, Wang R, Xuan W, Ye M, Tan W. 2018. Floxuridine homomeric oligonucleotides “hitchhike” with albumin in situ for cancer chemotherapy. Angew Chem Int Ed Engl 57:8994–8997. doi:10.1002/anie.201804156. PubMed DOI PMC
Sofia MJ, Bao D, Chang W, Du J, Nagarathnam D, Rachakonda S, Reddy PG, Ross BS, Wang P, Zhang HR, Bansal S, Espiritu C, Keilman M, Lam AM, Steuer HM, Niu C, Otto MJ, Furman PA. 2010. Discovery of a β-D-2'-deoxy-2'-α-fluoro-2'-β-C-methyluridine nucleotide prodrug (PSI-7977) for the treatment of hepatitis C virus. J Med Chem 53:7202–7218. doi:10.1021/jm100863x. PubMed DOI
Kozuch O, Mayer V. 1975. Pig kidney epithelial (PS) cells: a perfect tool for study of flaviviruses and some other arboviruses. Acta Virologica 19:498. PubMed
Mumtaz N, Jimmerson LC, Bushman LR, Kiser JJ, Aron G, Reusken CBEM, Koopmans MPG, van Kampen JJA. 2017. Cell-line dependent antiviral activity of sofosbuvir against Zika virus. Antiviral Res 146:161–163. doi:10.1016/j.antiviral.2017.09.004. PubMed DOI
Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M, Diamond MS, Geiss BJ. 2017. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral Res 137:134–140. doi:10.1016/j.antiviral.2016.11.023. PubMed DOI PMC
Ferreira AC, Zaverucha-do-Valle C, Reis PA, Barbosa-Lima G, Vieira YR, Mattos M, Silva PP, Sacramento C, de Castro Faria Neto HC, Campanati L, Tanuri A, Brüning K, Bozza FA, Bozza PT, Souza TML. 2017. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci Rep 7:9409. doi:10.1038/s41598-017-09797-8. PubMed DOI PMC
Eldrup AB, Allerson CR, Bennett CF, Bera S, Bhat B, Bhat N, Bosserman MR, Brooks J, Burlein C, Carroll SS, Cook PD, Getty KL, MacCoss M, McMasters DR, Olsen DB, Prakash TP, Prhavc M, Song QL, Tomassini JE, Xia J. 2004. Structure-activity relationship of purine ribonucleosides for inhibition of hepatitis C virus RNA-dependent RNA polymerase. J Med Chem 47:2283–2295. doi:10.1021/jm030424e. PubMed DOI
Van Aerschot A, Herdewijn P, Janssen G, Cools M, De Clercq E. 1989. Synthesis and antiviral activity evaluation of 3'-fluoro-3'-deoxyribonucleosides: broad-spectrum antiviral activity of 3'-fluoro-3'-deoxyadenosine. Antiviral Res 12:133–150. doi:10.1016/0166-3542(89)90047-8. PubMed DOI
Van Aerschot A, Balzarini J, De Clercq E, Herdewijn P. 1989. Synthesis of 3'-fluoro-3'-deoxyribonucleosides: anti-HIV-1 and cytostatic properties. Nucleosides, Nucleotides & Nucleic Acids 8:1123–1124. doi:10.1080/07328318908054305. DOI
Smee DF, Morris JL, Barnard DL, Van Aerschot A. 1992. Selective inhibition of arthropod-borne and arenaviruses in vitro by 3'-fluoro-3'-deoxyadenosine. Antiviral Res 18:151–162. doi:10.1016/0166-3542(92)90035-4. PubMed DOI
Mikhailopulo IA, Poopeiko NE, Prikota TI, Sivets GG, Kvasyuk EI, Balzarini J, De Clercq E. 1991. Synthesis and antiviral and cytostatic properties of 3'-deoxy-3'-fluoro- and 2'-azido-3'-fluoro-2',3'-dideoxy-D-ribofuranosides of natural heterocyclic bases. J Med Chem 34:2195–2202. doi:10.1021/jm00111a040. PubMed DOI
Mikhailopulo IA, Pricota TI, Poopeiko NE, Sivets GG, Kvasyuk EI, Sviryaeva TV, Savochkina LP, Beabealashvilli RS. 1989. 3'-Fluoro-3'-deoxyribonucleoside 5'-triphosphates: synthesis and use as terminators of RNA biosynthesis. FEBS Lett 250:139–141. doi:10.1016/0014-5793(89)80706-9. PubMed DOI
Lee K, Kim D-E, Jang K-S, Kim S-J, Cho S, Kim C. 2017. Gemcitabine, a broad-spectrum antiviral drug, suppresses enterovirus infections through innate immunity induced by the inhibition of pyrimidine biosynthesis and nucleotide depletion. Oncotarget 8:115315–115325. doi:10.18632/oncotarget.23258. PubMed DOI PMC
Eyer L, Valdés JJ, Gil VA, Nencka R, Hřebabecký H, Šála M, Salát J, Černý J, Palus M, De Clercq E, Růžek D. 2015. Nucleoside inhibitors of tick-borne encephalitis virus. Antimicrob Agents Chemother 59:5483–5493. doi:10.1128/AAC.00807-15. PubMed DOI PMC
Chen YL, Yin Z, Duraiswamy J, Schul W, Lim CC, Liu B, Xu HY, Qing M, Yip A, Wang G, Chan WL, Tan HP, Lo M, Liung S, Kondreddi RR, Rao R, Gu H, He H, Keller TH, Shi PY. 2010. Inhibition of dengue virus RNA synthesis by an adenosine nucleoside. Antimicrob Agents Chemother 54:2932–2939. doi:10.1128/AAC.00140-10. PubMed DOI PMC
Lo MK, Shi PY, Chen YL, Flint M, Spiropoulou CF. 2016. In vitro antiviral activity of adenosine analog NITD008 against tick borne flaviviruses. Antiviral Res 130:46–49. doi:10.1016/j.antiviral.2016.03.013. PubMed DOI PMC
Eyer L, Šmídková M, Nencka R, Neča J, Kastl T, Palus M, De Clercq E, Růžek D. 2016. Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus. Antiviral Res 133:119–129. doi:10.1016/j.antiviral.2016.07.018. PubMed DOI
Lo MK, Jordan R, Arvey A, Sudhamsu J, Shrivastava-Ranjan P, Hotard AL, Flint M, McMullan LK, Siegel D, Clarke MO, Mackman RL, Hui HC, Perron M, Ray AS, Cihlar T, Nichol ST, Spiropoulou CF. 2017. GS-5734 and its parent nucleoside analog inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci Rep 7:43395. doi:10.1038/srep43395. PubMed DOI PMC
Lam AM, Murakami E, Espiritu C, Steuer HM, Niu C, Keilman M, Bao H, Zennou V, Bourne N, Julander JG, Morrey JD, Smee DF, Frick DN, Heck JA, Wang P, Nagarathnam D, Ross BS, Sofia MJ, Otto MJ, Furman PA. 2010. PSI-7851, a pronucleotide of beta-D-2'-deoxy-2'-fluoro-2'-C-methyluridine monophosphate, is a potent and pan-genotype inhibitor of hepatitis C virus replication. Antimicrob Agents Chemother 54:3187–3196. doi:10.1128/AAC.00399-10. PubMed DOI PMC
Clark JL, Hollecker L, Mason JC, Stuyver LJ, Tharnish PM, Lostia S, McBrayer TR, Schinazi RF, Watanabe KA, Otto MJ, Furman PA, Stec WJ, Patterson SE, Pankiewicz KW. 2005. Design, synthesis, and antiviral activity of 2'-deoxy-2'-fluoro-2'-C-methylcytidine, a potent inhibitor of hepatitis C virus replication. J Med Chem 48:5504–5508. doi:10.1021/jm0502788. PubMed DOI
Eyer L, Fojtíková M, Nencka R, Rudolf I, Hubálek Z, Ruzek D. 2019. Viral RNA-dependent RNA polymerase inhibitor 7-deaza-2'-C-methyladenosine prevents death in a mouse model of West Nile virus infection. Antimicrob Agents Chemother 63:e02093-18. doi:10.1128/AAC.02093-18. PubMed DOI PMC
De Madrid AT, Porterfield JS. 1969. A simple micro-culture method for study of group B arboviruses. Bull World Health Organ 40:113–121. PubMed PMC
Prescher JA, Bertozzi CR. 2005. Chemistry in living systems. Nat Chem Biol 1:13–21. doi:10.1038/nchembio0605-13. PubMed DOI
Park Y, Depeursinge C, Popescu G. 2018. Quantitative phase imaging in biomedicine. Nature Photon 12:578–589. doi:10.1038/s41566-018-0253-x. DOI
Feith M, Vičar T, Gumulec J, Raudenská M, Gjörloff Wingren A, Masařík M, Balvan J. 2020. Quantitative phase dynamics of cancer cell populations affected by blue light. Appl Sci 10:2597. doi:10.3390/app10072597. DOI
Vicar T, Raudenska M, Gumulec J, Balvan J. 2020. The quantitative-phase dynamics of apoptosis and lytic cell death. Sci Rep 10:1566. doi:10.1038/s41598-020-58474-w. PubMed DOI PMC