Greener synthesis of Rod Shaped Zinc Oxide Nanoparticles using Lilium ledebourii tuber and evaluation of their Leishmanicidal activity

. 2020 Jan ; 18 (1) : e2196. [epub] 20200101

Status PubMed-not-MEDLINE Jazyk angličtina Země Írán Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32884950

BACKGROUND: Nanoparticles (NPs) with unique chemical and physical properties can be used for therapeutic purposes because of their strong antimicrobial activates. Nanoparticles have been used as an antimicrobial agents to inhibit microbial growth. OBJECTIVES: In view of the strong antimicrobial activity of nanoparticles, the biogenic synthesis and leishmanicidal activity of rod-shaped zinc oxide (R-ZnO) nanoparticles was explored using Lilium ledebourii tuber extract. MATERIALS AND METHODS: The ensuing nanoparticles are characterized by UV-visible spectroscopy, X-ray diffraction and transmission electron microscopy and their leishmanicidal activity evaluated against the Leishmania major (L. major) by MTT assay. RESULTS: The R-ZnO nanoparticles displayed excellent leishmanicidal activity against the L. major as they significantly inhibited the amastigotes. The IC50 values of R-ZnO nanoparticles being ~ 0.001 mg.mL-1. R-ZnO nanoparticles can inhibit L. major growth in a dose-dependent manner under in vitro conditions. CONCLUSION: A simple, low-cost feasible and eco-friendly procedure was developed for biosynthesis of R-ZnO nanoparticles using natural bioresource that can inhibit human parasite cells growth in a dose-dependent manner under in vitro conditions.

Zobrazit více v PubMed

Khatami M, Alijani H, Sharifi I, Sharifi F, Pourseyedi S, Kharazi S, et al. Leishmanicidal Activity of Biogenic Fe3O4 Nanoparticles. Sci Pharm. 2017;85(4):36. doi: 10.3390/scipharm85040036. PubMed DOI PMC

Aflatoonian MR, Sharifi I, Aflatoonian B, Bamorovat M, Heshmatkhah A, Babaei Z, et al. Associated-risk determinants for anthroponotic cutaneous leishmaniasis treated with meglumine antimoniate: A cohort study in Iran. PLoS Negl Trop Dis. 13(6):e0007423. doi: 10.1371/journal.pntd.0007423. PubMed DOI PMC

Bamorovat M, Sharifi I, Aflatoonian MR, Sadeghi B, Shafiian A, Oliaee RT, et al. Host's immune response in unresponsive and responsive patients with anthroponotic cutaneous leishmaniasis treated by meglumine antimoniate: A case-control study of Th1 and Th2 pathways. Int immunopharmacology. 2019;69:321–327. doi: 10.1016/j.intimp.2019.02.008. PubMed DOI

Daneshvar H, Tavakoli Kareshk A, Sharifi I, Keyhani A, Tavakoli Oliaee R, Asadi A. Host-parasite Responses Outcome Regulate the Expression of Antimicrobial Peptide Genes in the Skin of BALB/c and C57BL/6 Murine Strains Following Leishmania major MRHO/IR/75/ER Infection. Iran J Parasitol. 2018;13(4):515–523. doi: 10.1016/j.ijbiomac.2017.08.149. PubMed DOI PMC

Mahmoudvand H, Fasihi Harandi M, Shakibaie M, Aflatoonian MR, ZiaAli N, Makki MS, et al. Scolicidal effects of biogenic selenium nanoparticles against protoscolices of hydatid cysts. Int J Surg. 2014;12(5):399–403. doi: 10.1016/j.ijsu.2014.03.017. PubMed DOI

Jahani S, Khorasani-Motlagh M, Noroozifar M. DNA interaction of europium(III) complex containing 2,2′-bipyridine and its antimicrobial activity. J Biomol Struct Dynamics. 2016;34(3):612–624. doi: 10.1080/07391102.2015.1048481. PubMed DOI

Karthik K, Vijayalakshmi S, Phuruangrat A, Revathi V, Verma U. Multifunctional Applications of Microwave-Assisted Biogenic TiO2 Nanoparticles. J Clu Sci. 2019;30:1–8. doi: 10.1007/s10876-019-01556-1. DOI

Niroomand S, Khorasani-Motlagh M, Noroozifar M, Jahani S, Moodi A. Photochemical and DFT studies on DNA-binding ability and antibacterial activity of lanthanum(III)-phenanthroline complex. J Mol Struct. 2017;1130:940–950. doi: 10.1016/j.molstruc.2016.10.076. DOI

Rahi A, Sattarahmady N, Heli H. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms. Sci Rep. 2015;5:18060. doi: 10.1038/srep18060. PubMed DOI PMC

Hossein H, Masoud N. Applications of Nanoflowers in Biomedicine. Recent Pat Nanotechnol . 2018;12(1):22–33. doi: 10.2174/1872210511666170911153428. PubMed DOI

Khatami M, Iravani S, Varma R.s, Mosazade F, Darroudi M, Borhani F. Cockroach wings-promoted safe and greener synthesis of silver nanoparticles and their insecticidal activity . Bioprocess Biosyst Eng . 2019;42 PubMed

Akhtartavan S, Karimi M, Karimian K, Azarpira N, Khatami M, Heli H. Evaluation of a self-nanoemulsifying docetaxel delivery system. Biomed Pharmaco. 2019;109(2019):2427–2433. doi: 10.1016/j.biopha.2018.11.110. PubMed DOI

Rajaei M, Foroughi MM, Jahani S, Shahidi Zandi M, Hassani Nadiki H. Sensitive detection of morphine in the presence of dopamine with La3+ doped fern-like CuO nanoleaves/MWCNTs modified carbon paste electrode. J Mol Liq. 2019;284:462–472. doi: 10.1016/j.molliq.2019.03.135. DOI

Torkzadeh-Mahani R, Foroughi MM, Jahani S, Kazemipour M, Hassani Nadiki H. The effect of ultrasonic irradiation on the morphology of NiO/Co3O4 nanocomposite and its application to the simultaneous electrochemical determination of droxidopa and carbidopa. Ultrason Sonochem. 2019;56:183–192. doi: 10.1016/j.ultsonch.2019.04.002. PubMed DOI

Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, et al. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 2019;15(1):4–33. doi: 10.1016/j.ijbiomac.2017.08.149. PubMed DOI PMC

Darroudi M, Sarani M, Kazemi Oskuee R, Khorsand Zak A, Amiri MS. Nanoceria: Gum mediated synthesis and in vitro viability assay. Ceram Int. 2014;40(2):2863–2868. doi: 10.1016/j.ceramint.2013.10.026. DOI

Sattarahmady N, Rezaie-Yazdi M, Tondro GH, Akbari N. Bactericidal laser ablation of carbon dots: An in vitro study on wild-type and antibiotic-resistant . Staphylococcus aureus J Photochem Photobiol B. 2017;166(Supplement C):323–332. doi: 10.1016/j.jphotobiol.2016.12.006. PubMed DOI

Karthik K, Dhanuskodi S, Gobinath C, Prabukumar S, Sivaramakrishnan S. Fabrication of MgO nanostructures and its efficient photocatalytic, antibacterial and anticancer performance. J Photochem Photobiol B. 2019;190:8–20. doi: 10.1016/j.jphotobiol.2018.11.001. PubMed DOI

Khatami M, Alijani H, Sharifi I. Biosynthesis of bimetallic and core shell nanoparticles: their biomedical applications: A review. IET Nanobio. 2018;12(7): 879–887. doi: 10.1049/iet-nbt.2017.0308. PubMed DOI PMC

Dağlıoğlu Y, Yılmaz Öztürk B. Effect of concentration and exposure time of ZnO-TiO2 nanocomposite on photosynthetic pigment contents, ROS production ability, and bioaccumulation of freshwater algae (Desmodesmus multivariabilis) Caryologia. 2018;71(1):13–23. doi: 10.1080/00087114.2017.1400262. DOI

Khatami M, Varma R.s, Heydari M, Peydayesh M, Sedighi A, AghaAskari H, Rohani M, Baniasadi M, Arkia S, Seyedi F, Khatami S. Copper Oxide Nanoparticles Greener Synthesis Using Tea and its Antifungal Efficiency on Fusarium solani. Geomicrobiology J . 2019;36:1. doi: 10.1080/01490451.2019.1621963. DOI

Karthik K, Pradeeswari K, Mohan Kumar R, Murugesan R. Microwave-assisted V2O5 nanoflowers for efficient lithium-ion battery. Mat Res Innovations. 2019;23:1–5. doi: 10.1080/14328917.2019.1618044. DOI

Khan AU, Yuan Q, Khan ZUH, Ahmad A, Khan FU, Tahir K, et al. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. J Photochem Photobiol B. 2018;183:367–373. doi: 10.1016/j.jphotobiol.2018.05.007. PubMed DOI

Miri A, Sarani M. Biosynthesis, characterization and cytotoxic activity of CeO2 NPs. Ceram Int. 2018;44(11):12642–12647. doi: 10.1016/j.ceramint.2018.04.063. DOI

Miri A, Sarani M. Biological studies of synthesized silver nanoparticles using Prosopis farcta. Mol Biol Rep. 2018;45(6):1621–1626. doi: 10.1007/s11033-018-4299-0. PubMed DOI

Jamdagni P, Rana JS, Khatri P, Nehra K. Comparative account of antifungal activity of green and chemically synthesized Zinc Oxide nanoparticles in combination with agricultural fungicides. Int J Nano Dim. 2018;9(2):198–208. doi: 10.1016/j.ijbiomac.2017.08.149. DOI

Minhas FT, Arslan G, Gubbuk IH, Akkoz C, Ozturk BY, Asıkkutlu B, et al. Evaluation of antibacterial properties on polysulfone composite membranes using synthesized biogenic silver nanoparticles with Ulva compressa (L) and Cladophora glomerata (L) Kütz extracts Kütz . Int J Biol Macromol. 2018;107:157–165. doi: 10.1016/j.ijbiomac.2017.08.149. PubMed DOI

Tahir K, Ahmad A, Li B, Khan AU, Nazir S, Khan S, et al. Preparation, characterization and an efficient photocatalytic activity of Au/TiO2 nanocomposite prepared by green deposition method. Mat Let. 2016;178:56–59. doi: 10.1016/j.matlet.2016.04.176. DOI

Khan FU, Chen Y, Khan NU, Khan ZUH, Khan AU, Ahmad A, et al. Antioxidant and catalytic applications of silver nanoparticles using Dimocarpus longan seed extract as a reducing and stabilizing agent. J Photochem Photobiol B. 2016;164:344–351. doi: 10.1016/j.jphotobiol.2016.09.042. PubMed DOI

Tahir K, Nazir S, Ahmad A, Li B, Ali Shah SA, Khan AU, et al. Biodirected synthesis of palladium nanoparticles using Phoenix dactylifera leaves extract and their size dependent biomedical and catalytic applications. RSC Adv. 2016;6(89):85903–16. doi: 10.1039/C6RA11409A. DOI

Ahmad A, Syed F, Shah A, Khan Z, Tahir K, Khan AU, et al. Silver and gold nanoparticles from Sargentodoxa cuneata: synthesis, characterization and antileishmanial activity. RSC Adv. 2015;5(90):73793–806. doi: 10.1039/C5RA13206A. DOI

Khatami M, Alijani HQ, Heli H, Sharifi I. Rectangular shaped zinc oxide nanoparticles: Green synthesis by Stevia and its biomedical efficiency. Ceram Int. 2018;44(13):15596–15602. doi: 10.1016/j.ceramint.2018.05.224. DOI

Nagajyothi PC, Sreekanth TVM, Tettey CO, Jun YI, Mook SH. Characterization, antibacterial, antioxidant, and cytotoxic activities of ZnO nanoparticles using Coptidis Rhizoma. Bioorg Med Chem Lett. 2014;24(17):4298–4303. doi: 10.1016/j.bmcl.2014.07.023. PubMed DOI

Kim K-M, Choi M-H, Lee J-K, Jeong J, Kim Y-R, Kim M-K, et al. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes. Int J Nanomedicine. 2014;9(Suppl 2):41–56. doi: 10.2147/IJN.S57923. PubMed DOI PMC

Birla S, Tiwari V, Gade A, Ingle A, Yadav A, Rai M. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48(2):173–179. doi: 10.1111/j.1472-765X.2008.02510.x. PubMed DOI

Rai M, Duran N. Metal nanoparticles in microbiology: . Springer Science & Business Media. 2011 doi: 10.1007/978-3-642-18312-6. DOI

Delavari M, Dalimi A, Ghaffarifar F, Sadraei J. In Vitro Study on Cytotoxic Effects of ZnO Nanoparticles on Promastigote and Amastigote Forms of Leishmania major (MRHO/IR/75/ER) Iran J Parasitol. 2014;9(1):6–13. PubMed PMC

Sumaira G, Afridi MS, Hashmi SS, Ali GS, Zia M, Abbasi BH. Comparative antileishmanial efficacy of the biosynthesised ZnO NPs from genus Verbena. IET nanobiotech. 2018;12(8):1067–1073. doi: 10.1049/iet-nbt.2018.5076. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...