The new platinum(IV) derivative LA-12 shows stronger inhibitory effect on Hsp90 function compared to cisplatin

. 2010 Jun 15 ; 9 () : 147. [epub] 20100615

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid20550649

BACKGROUND: Cisplatin and its derivatives are commonly used anti-cancer drugs. However, cisplatin has clinical limitations including serious side effects and frequent emergence of intrinsic or acquired resistance. Thus, the novel platinum(IV) complex LA-12 represents a promising treatment modality, which shows increased intracellular penetration resulting in improved cytotoxicity in various cancer cell lines, including cisplatin resistant cells. RESULTS: LA-12 disrupts cellular proliferation regardless of the p53 status in the cells, however the potency of the drug is greatly enhanced by the presence of a functional p53, indicating several mechanisms of action. Similarly to cisplatin, an interaction of LA-12 with molecular chaperone Hsp90 was proposed. Binding of LA-12 to Hsp90 was demonstrated by Hsp90 immunoprecipitation followed by platinum measurement using atomic absorption spectrometry (AAS). An inhibitory effect of LA-12 on Hsp90 chaperoning function was shown by decrease of Hsp90-assisted wild-type p53 binding to p21WAF1 promoter sequence in vitro and by accelerated ubiqutination and degradation of primarily unfolded mutant p53 proteins in cells exposed to LA-12. CONCLUSIONS: To generalize our findings, LA-12 induced degradation of other Hsp90 client proteins such as Cyclin D1 and estrogen receptor was shown and proved as more efficient in comparison with cisplatin. This newly characterised molecular mechanism of action opens opportunities to design new cancer treatment strategy profitable from unique LA-12 properties, which combine DNA damaging and Hsp90 inhibitory effects.

Zobrazit více v PubMed

Ho YP, Au-Yeung SC, To KK. Platinum-based anticancer agents: innovative design strategies and biological perspectives. Med Res Rev. 2003;23:633–655. doi: 10.1002/med.10038. PubMed DOI

Kozubik A, Vaculova A, Soucek K, Vondracek J, Turanek J, Hofmanova J. Novel Anticancer Platinum(IV) Complexes with Adamantylamine: Their Efficiency and Innovative Chemotherapy Strategies Modifying Lipid Metabolism. Met Based Drugs. 2008;2008:417–897. doi: 10.1155/2008/417897. PubMed DOI PMC

Choy H, Park C, Yao M. Current status and future prospects for satraplatin, an oral platinum analogue. Clin Cancer Res. 2008;14:1633–1638. doi: 10.1158/1078-0432.CCR-07-2176. PubMed DOI

Fokkema E, Groen HJ, Bauer J, Uges DR, Weil C, Smith IE. Phase II study of oral platinum drug JM216 as first-line treatment in patients with small-cell lung cancer. J Clin Oncol. 1999;17:3822–3827. PubMed

Kelland LR. An update on satraplatin: the first orally available platinum anticancer drug. Expert Opin Investig Drugs. 2000;9:1373–1382. doi: 10.1517/13543784.9.6.1373. PubMed DOI

Zak F, Turanek J, Kroutil A, Sova P, Mistr A, Poulova A, Mikolin P, Zak Z, Kasna A, Zaluska D. Platinum(IV) complex with adamantylamine as nonleaving amine group: synthesis, characterization, and in vitro antitumor activity against a panel of cisplatin-resistant cancer cell lines. J Med Chem. 2004;47:761–763. doi: 10.1021/jm030858+. PubMed DOI

Turanek J, Kasna A, Zaluska D, Neca J, Kvardova V, Knotigova P, Horvath V, SI L, Kozubik A, Sova P. New platinum(IV) complex with adamantylamine ligand as a promising anti-cancer drug: comparison of in vitro cytotoxic potential towards A2780/cisR cisplatin-resistant cell line within homologous series of platinum(IV) complexes. Anticancer Drugs. 2004;15:537–543. doi: 10.1097/01.cad.0000127147.57796.e5. PubMed DOI

Horvath V, Blanarova O, Svihalkova-Sindlerova L, Soucek K, Hofmanova J, Sova P, Kroutil A, Fedorocko P, Kozubik A. Platinum(IV) complex with adamantylamine overcomes intrinsic resistance to cisplatin in ovarian cancer cells. Gynecol Oncol. 2006;102:32–40. doi: 10.1016/j.ygyno.2005.11.016. PubMed DOI

Cermanova J, Chladek J, Soval P, Kroutil A, Semerad M, Berankova Z, Siroky P, Surova I. Single-dose pharmacokinetics of a novel oral platinum cytostatic drug ([OC-6-43]-bis[acetato][1-adamantylamine]amminedichloroplatinum [IV]) in pigs. Methods Find Exp Clin Pharmacol. 2004;26:679–685. doi: 10.1358/mf.2004.26.9.872565. PubMed DOI

Sova P, Mistr A, Kroutil A, Zak F, Pouckova P, Zadinova M. Preclinical anti-tumor activity of a new oral platinum(IV) drug LA-12. Anticancer Drugs. 2005;16:653–657. doi: 10.1097/00001813-200507000-00010. PubMed DOI

Sova P, Mistr A, Kroutil A, Zak F, Pouckova P, Zadinova M. Comparative anti-tumor efficacy of two orally administered platinum(IV) drugs in nude mice bearing human tumor xenografts. Anticancer Drugs. 2006;17:201–206. doi: 10.1097/00001813-200602000-00012. PubMed DOI

Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22:7265–7279. doi: 10.1038/sj.onc.1206933. PubMed DOI

Mellish KJ, Barnard CF, Murrer BA, Kelland LR. DNA-binding properties of novel cis- and trans platinum-based anticancer agents in 2 human ovarian carcinoma cell lines. Int J Cancer. 1995;62:717–723. doi: 10.1002/ijc.2910620612. PubMed DOI

Horvath V, Soucek K, Svihalkova-Sindlerova L, Vondracek J, Blanarova O, Hofmanova J, Sova P, Kozubik A. Different cell cycle modulation following treatment of human ovarian carcinoma cells with a new platinum(IV) complex vs cisplatin. Invest New Drugs. 2007;25:435–443. doi: 10.1007/s10637-007-9062-7. PubMed DOI

Roubalova E, Kvardova V, Hrstka R, Borilova S, Michalova E, Dubska L, Muller P, Sova P, Vojtesek B. The effect of cellular environment and p53 status on the mode of action of the platinum derivative LA-12. Invest New Drugs. 2010;28(4):445–53. doi: 10.1007/s10637-009-9270-4. PubMed DOI

Hrstka R, Powell DJ, Kvardova V, Roubalova E, Bourougaa K, Candeias MM, Sova P, Zak F, Fahraeus R, Vojtesek B. The novel platinum(IV) complex LA-12 induces p53 and p53/47 responses that differ from the related drug, cisplatin. Anticancer Drugs. 2008;19:369–379. doi: 10.1097/CAD.0b013e3282f7f500. PubMed DOI

Itoh H, Ogura M, Komatsuda A, Wakui H, Miura AB, Tashima Y. A novel chaperone-activity-reducing mechanism of the 90-kDa molecular chaperone HSP90. Biochem J. 1999;343(Pt 3):697–703. doi: 10.1042/0264-6021:3430697. PubMed DOI PMC

Rosenhagen MC, Soti C, Schmidt U, Wochnik GM, Hartl FU, Holsboer F, Young JC, Rein T. The heat shock protein 90-targeting drug cisplatin selectively inhibits steroid receptor activation. Mol Endocrinol. 2003;17:1991–2001. doi: 10.1210/me.2003-0141. PubMed DOI

Shames DS, Minna JD. IP6K2 is a client for HSP90 and a target for cancer therapeutics development. Proc Natl Acad Sci USA. 2008;105:1389–1390. doi: 10.1073/pnas.0711993105. PubMed DOI PMC

Chakraborty A, Koldobskiy MA, Sixt KM, Juluri KR, Mustafa AK, Snowman AM, van Rossum DB, Patterson RL, Snyder SH. HSP90 regulates cell survival via inositol hexakisphosphate kinase-2. Proc Natl Acad Sci USA. 2008;105:1134–1139. doi: 10.1073/pnas.0711168105. PubMed DOI PMC

Walerych D, Kudla G, Gutkowska M, Wawrzynow B, Muller L, King FW, Helwak A, Boros J, Zylicz A, Zylicz M. Hsp90 chaperones wild-type p53 tumor suppressor protein. J Biol Chem. 2004;279:48836–48845. doi: 10.1074/jbc.M407601200. PubMed DOI

Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene. 2008;27:3371–3383. doi: 10.1038/sj.onc.1211010. PubMed DOI

Lukashchuk N, Vousden KH. Ubiquitination and degradation of mutant p53. Mol Cell Biol. 2007;27:8284–8295. doi: 10.1128/MCB.00050-07. PubMed DOI PMC

Sova P, Chladek J, Zak F, Mistr A, Kroutil A, Semerad M, Slovak Z. Pharmacokinetics and tissue distribution of platinum in rats following single and multiple oral doses of LA-12 [(OC-6-43)-bis(acetato)(1-adamantylamine)amminedichloroplatinum(IV)] Int J Pharm. 2005;288:123–129. doi: 10.1016/j.ijpharm.2004.09.020. PubMed DOI

Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 1998;79:129–168. doi: 10.1016/S0163-7258(98)00013-8. PubMed DOI

Soti C, Racz A, Csermely P. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem. 2002;277:7066–7075. doi: 10.1074/jbc.M105568200. PubMed DOI

Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997;90:65–75. doi: 10.1016/S0092-8674(00)80314-1. PubMed DOI

Hawle P, Siepmann M, Harst A, Siderius M, Reusch HP, Obermann WM. The middle domain of Hsp90 acts as a discriminator between different types of client proteins. Mol Cell Biol. 2006;26:8385–8395. doi: 10.1128/MCB.02188-05. PubMed DOI PMC

Donnelly A, Blagg BS. Novobiocin and additional inhibitors of the Hsp90 C-terminal nucleotide-binding pocket. Curr Med Chem. 2008;15:2702–2717. doi: 10.2174/092986708786242895. PubMed DOI PMC

Yun BG, Huang W, Leach N, Hartson SD, Matts RL. Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry. 2004;43:8217–8229. doi: 10.1021/bi0497998. PubMed DOI

Fang L, Ricketson D, Getubig L, Darimont B. Unliganded and hormone-bound glucocorticoid receptors interact with distinct hydrophobic sites in the Hsp90 C-terminal domain. Proc Natl Acad Sci USA. 2006;103:18487–92. doi: 10.1073/pnas.0609163103. PubMed DOI PMC

Vojtesek B, Bartek J, Midgley CA, Lane DP. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods. 1992;151:237–244. doi: 10.1016/0022-1759(92)90122-A. PubMed DOI

Milner J. Structures and functions of the tumor suppressor p53. Pathol Biol (Paris) 1997;45:797–803. PubMed

Wang PL, Sait F, Winter G. The 'wildtype' conformation of p53: epitope mapping using hybrid proteins. Oncogene. 2001;20:2318–2324. doi: 10.1038/sj.onc.1204316. PubMed DOI

Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. Embo J. 1990;9:1595–1602. PubMed PMC

Walerych D, Olszewski MB, Gutkowska M, Helwak A, Zylicz M, Zylicz A. Hsp70 molecular chaperones are required to support p53 tumor suppressor activity under stress conditions. Oncogene. 2009;28:4284–4294. doi: 10.1038/onc.2009.281. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...