Evaluation of cytotoxic activity of titanocene difluorides and determination of their mechanism of action in ovarian cancer cells

. 2015 Oct ; 33 (5) : 1123-32. [epub] 20150724

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid26205069
Odkazy

PubMed 26205069
DOI 10.1007/s10637-015-0274-y
PII: 10.1007/s10637-015-0274-y
Knihovny.cz E-zdroje

BACKGROUND: Ovarian cancer is the seventh-most common cancer amongst women and the most deadly gynecologic cancer. Cisplatin based drugs are used in first line therapy, but resistance represents a major obstacle for successful treatment. In this study, we investigated the anticancer effects and mechanism of action of three titanocene difluorides, two bearing a pendant carbohydrate moiety (α-D-ribofuranos-5-yl) on their periphery and one without any substitution. RESULTS: The efficacy of these compounds on ovarian cancer cell lines was evaluated in relation to their particular chemical structure and compared with cisplatin as the most common treatment modality for this type of cancer. The typical mechanism of cisplatin action involves DNA damage, activation of p53 protein and induction of cell death, as previously described for titanium ions. Nevertheless, our data indicate that the effect of titanocene difluoride derivatives is mediated via the endoplasmic reticulum stress pathway and autophagy. CONCLUSION: We anticipate that the presence of substituents on cyclopentadienyl ring(s) might play an important role in modulation of the activity of particular compounds. Titanocene difluorides exert comparable cytotoxic activity as cisplatin and are more efficient in cisplatin-resistant cell lines. Our results suggest potential utilization of these compounds especially in the treatment of cisplatin-resistant tumor cells.

Zobrazit více v PubMed

ACS Chem Biol. 2013;8(6):1335-43 PubMed

J Cancer Res Clin Oncol. 1983;106(1):44-52 PubMed

Bioinorg Chem Appl. 2010;:null PubMed

Antioxid Redox Signal. 2011 Aug 15;15(4):1085-127 PubMed

J Biol Chem. 2006 Oct 6;281(40):30299-304 PubMed

Mol Cancer. 2010 Jun 15;9:147 PubMed

J Phys Chem B. 2006 Oct 5;110(39):19632-6 PubMed

J Immunol Methods. 1992 Jul 6;151(1-2):237-44 PubMed

Mol Cancer Ther. 2011 Sep;10(9):1533-41 PubMed

Cell Signal. 2012 May;24(5):981-90 PubMed

Acta Pharmacol Sin. 2013 May;34(5):595-9 PubMed

Mol Cancer Res. 2011 Oct;9(10):1305-18 PubMed

Pharmacol Res. 2014 Apr;82:1-8 PubMed

Invest New Drugs. 2011 Aug;29(4):607-14 PubMed

Ther Deliv. 2012 Jul;3(7):823-33 PubMed

Anticancer Res. 2013 Nov;33(11):4683-94 PubMed

Bioinorg Chem Appl. 2012;2012:140284 PubMed

Am J Pathol. 1996 Mar;148(3):825-35 PubMed

Br J Cancer. 1998 Jun;77(12):2088-97 PubMed

Biochem Soc Trans. 2007 Nov;35(Pt 5):1147-50 PubMed

J Clin Invest. 2003 Dec;112(12 ):1809-20 PubMed

Int J Mol Sci. 2013 Mar 19;14(3):6306-44 PubMed

Chemistry. 2013 Jul 8;19(28):9297-307 PubMed

Inorg Chem. 2010 Feb 15;49(4):1292-4 PubMed

Mol Cell Biol. 2006 Dec;26(24):9220-31 PubMed

J Biol Inorg Chem. 2009 Aug;14(6):947-57 PubMed

J Inorg Biochem. 2005 Dec;99(12):2264-9 PubMed

Oncogene. 1998 Aug 27;17(8):1045-52 PubMed

Biochim Biophys Acta. 2013 Dec;1833(12 ):3460-3470 PubMed

Angew Chem Int Ed Engl. 1979 Jun;18(6):477-8 PubMed

J Med Chem. 2011 Jan 13;54(1):3-25 PubMed

Autophagy. 2012 Feb 1;8(2):158-64 PubMed

Methods Mol Biol. 2008;445:77-88 PubMed

Cancer Chemother Pharmacol. 1998;42(5):415-7 PubMed

Int J Med Chem. 2012;2012:905981 PubMed

Oncogene. 2000 Aug 10;19(34):3829-39 PubMed

Curr Drug Targets. 2014;15(9):843-51 PubMed

Scientifica (Cairo). 2012;2012:857516 PubMed

Toxicol Lett. 1995 Dec;82-83:969-74 PubMed

PLoS One. 2013 Nov 19;8(11):e81162 PubMed

Biochemistry. 2000 Aug 22;39(33):10023-33 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...