Modulatory Effects of Eschscholzia californica Alkaloids on Recombinant GABAA Receptors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
26509084
PubMed Central
PMC4609799
DOI
10.1155/2015/617620
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The California poppy (Eschscholzia californica Cham.) contains a variety of natural compounds including several alkaloids found exclusively in this plant. Because of the sedative, anxiolytic, and analgesic effects, this herb is currently sold in pharmacies in many countries. However, our understanding of these biological effects at the molecular level is still lacking. Alkaloids detected in E. californica could be hypothesized to act at GABAA receptors, which are widely expressed in the brain mainly at the inhibitory interneurons. Electrophysiological studies on a recombinant α 1 β 2 γ 2 GABAA receptor showed no effect of N-methyllaurotetanine at concentrations lower than 30 μM. However, (S)-reticuline behaved as positive allosteric modulator at the α 3, α 5, and α 6 isoforms of GABAA receptors. The depressant properties of aerial parts of E. californica are assigned to chloride-current modulation by (S)-reticuline at the α 3 β 2 γ 2 and α 5 β 2 γ 2 GABAA receptors. Interestingly, α 1, α 3, and α 5 were not significantly affected by (R)-reticuline, 1,2-tetrahydroreticuline, codeine, and morphine-suspected (S)-reticuline metabolites in the rodent brain.
Department of Biochemistry Faculty of Medicine Masaryk University 62500 Brno Czech Republic
Michelin Recherche et Technique S A Route André Piller 30 1762 Givisiez Switzerland
Zobrazit více v PubMed
Schafer H. L., Schafer H., Schneider W., Elstner E. F. Sedative action of extract combinations of Eschscholtzia californica and Corydalis cava . Arzneimittel-Forschung. 1995;45(2):124–126. PubMed
Rolland A., Fleurentin J., Lanhers M.-C., et al. Behavioural effects of the American traditional plant Eschscholzia californica: sedative and anxiolytic properties. Planta Medica. 1991;57(3):212–216. doi: 10.1055/s-2006-960076. PubMed DOI
Rolland A., Fleurentin J., Lanhers M. C., Misslin R., Mortier F. Neurophysiological effects of an extract of Eschscholzia californica Cham. (Papaveraceae) Phytotherapy Research. 2001;15(5):377–381. doi: 10.1002/ptr.884. PubMed DOI
Hanus M., Lafon J., Mathieu M. Double-blind, randomised, placebo-controlled study to evaluate the efficacy and safety of a fixed combination containing two plant extracts (Crataegus oxyacantha and Eschscholtzia californica) and magnesium in mild-to-moderate anxiety disorders. Current Medical Research and Opinion. 2004;20(1):63–71. doi: 10.1185/030079903125002603. PubMed DOI
Kardos J., Blaskó G., Simonyi M. Enhancement of gamma-aminobutyric acid receptor binding by protopine-type alkaloids. Arzneimittel-Forschung. 1986;36(6):939–940. PubMed
Häberlein H., Tschiersch K.-P., Boonen G., Hiller K.-O. Chelidonium majus L.: components with in vitro Affinity for the GABAA Receptor. Positive Cooperation of Alkaloids. Planta Medica. 1996;62(3):227–231. doi: 10.1055/s-2006-957865. PubMed DOI
Vacek J., Walterová D., Vrublová E., Šimánek V. The chemical and biological properties of protopine and allocryptopine. Heterocycles. 2010;81(8):1773–1789. doi: 10.3987/REV-10-673. DOI
Şener B., Orhan I. Discovery of drug candidates from some Turkish plants and conservation of biodiversity. Pure and Applied Chemistry. 2005;77(1):53–64. doi: 10.1351/pac200577010053. DOI
Gafner S., Dietz B. M., McPhail K. L., et al. Alkaloids from Eschscholzia californica and their capacity to inhibit binding of [3H]8-hydroxy-2-(di-N-propylamino) tetralin to 5-HT1A receptors in vitro. Journal of Natural Products. 2006;69(3):432–435. doi: 10.1021/np058114h. PubMed DOI
Xu L.-F., Chu W.-J., Qing X.-Y., et al. Protopine inhibits serotonin transporter and noradrenaline transporter and has the antidepressant-like effect in mice models. Neuropharmacology. 2006;50(8):934–940. doi: 10.1016/j.neuropharm.2006.01.003. PubMed DOI
Bugatti C., Colombo M. L., Tomé F. A new method for alkaloid extraction from Chelidonium majus L. Phytochemical Analysis. 1991;2(2):65–67. doi: 10.1002/pca.2800020204. DOI
Suchomelová J., Bochořáková H., Paulová H., Musil P., Táborská E. HPLC quantification of seven quaternary benzo[c]phenanthridine alkaloids in six species of the family Papaveraceae . Journal of Pharmaceutical and Biomedical Analysis. 2007;44(1):283–287. doi: 10.1016/j.jpba.2007.02.005. PubMed DOI
Sigel E. Properties of single sodium channels translated by Xenopus oocytes after injection with messenger ribonucleic acid. Journal of Physiology. 1987;386:73–90. doi: 10.1113/jphysiol.1987.sp016523. PubMed DOI PMC
Fabre N., Claparols C., Richelme S., Angelin M.-L., Fourasté I., Moulis C. Direct characterization of isoquinoline alkaloids in a crude plant extract by ion-pair liquid chromatography-electrospray ionization tandem mass spectrometry: example of Eschscholtzia californica . Journal of Chromatography A. 2000;904(1):35–46. doi: 10.1016/s0021-9673(00)00919-5. PubMed DOI
Rey J.-P., Levesque J., Pousset J.-L., Roblot F. Analytical and quantitative studies of californin and protopin in aerial part extracts of Eschscholtzia californica Cham. with high-performance liquid chromatography. Journal of Chromatography A. 1991;587(2):314–317. doi: 10.1016/0021-9673(91)85174-e. DOI
Tomè F., Colombo M. L., Caldiroli L. A comparative investigation on alkaloid composition in different populations of Eschscholtzia californica Cham. Phytochemical Analysis. 1999;10(5):264–267. doi: 10.1002/(sici)1099-1565(199909/10)10:5lt;264::aid-pca469>3.0.co;2-4. DOI
Verma S. K., Jain V., Verma D., Khamesra R. Cratageus oxycantha—a cardioprotective herb. Journal of Herbal Medicine and Toxicology. 2007;1:65–71.
Goutman J. D., Waxemberg M. D., Doñate-Oliver F., Pomata P. E., Calvo D. J. Flavonoid modulation of ionic currents mediated by GABA(A) and GABA(C) receptors. European Journal of Pharmacology. 2003;461(2-3):79–87. PubMed
Aguirre-Hernández E., Martínez A. L., González-Trujano M. E., Moreno J., Vibrans H., Soto-Hernández M. Pharmacological evaluation of the anxiolytic and sedative effects of Tilia americana L. var. mexicana in mice. Journal of Ethnopharmacology. 2007;109(1):140–145. doi: 10.1016/j.jep.2006.07.017. PubMed DOI
Aguirre-Hernández E., González-Trujano M. E., Martínez A. L., et al. HPLC/MS analysis and anxiolytic-like effect of quercetin and kaempferol flavonoids from Tilia americana var. mexicana . Journal of Ethnopharmacology. 2010;127(1):91–97. doi: 10.1016/j.jep.2009.09.044. PubMed DOI
Martínez A. L., González-Trujano M. E., Aguirre-Hernández E., Moreno J., Soto-Hernández M., López-Muñoz F. J. Antinociceptive activity of Tilia americana var. mexicana inflorescences and quercetin in the formalin test and in an arthritic pain model in rats. Neuropharmacology. 2009;56:564–571. doi: 10.1016/j.neuropharm.2008.10.010. PubMed DOI
Beck M.-A., Häberlein H. Flavonol glycosides from Eschscholtzia californica . Phytochemistry. 1999;50(2):329–332. doi: 10.1016/s0031-9422(98)00503-2. PubMed DOI
Boettcher C., Fellermeier M., Boettcher C., Dräger B., Zenk M. H. How human neuroblastoma cells make morphine. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(24):8495–8500. doi: 10.1073/pnas.0503244102. PubMed DOI PMC
Morais L. C. S. L., Barbosa-Filho J. M., Almeida R. N. Central depressant effects of reticuline extracted from Ocotea duckei in rats and mice. Journal of Ethnopharmacology. 1998;62(1):57–61. doi: 10.1016/s0378-8741(98)00044-0. PubMed DOI
Ziegler J., Facchini P. J., Geißler R., et al. Evolution of morphine biosynthesis in opium poppy. Phytochemistry. 2009;70(15-16):1696–1707. doi: 10.1016/j.phytochem.2009.07.006. PubMed DOI
Nikolaev V. O., Boettcher C., Dees C., Bünemann M., Lohse M. J., Zenk M. H. Live cell monitoring of μ-opioid receptor-mediated G-protein activation reveals strong biological activity of close morphine biosynthetic precursors. Journal of Biological Chemistry. 2007;282(37):27126–27132. doi: 10.1074/jbc.m703272200. PubMed DOI
Laux A., Muller A. H., Miehe M., et al. Mapping of endogenous morphine-like compounds in the adult mouse brain: evidence of their localization in astrocytes and GABAergic cells. Journal of Comparative Neurology. 2011;519(12):2390–2416. doi: 10.1002/cne.22633. PubMed DOI
Freund T. F., Katona I. Perisomatic inhibition. Neuron. 2007;56(1):33–42. doi: 10.1016/j.neuron.2007.09.012. PubMed DOI
Beneyto M., Lewis D. A. Insights into the neurodevelopmental origin of schizophrenia from postmortem studies of prefrontal cortical circuitry. International Journal of Developmental Neuroscience. 2011;29(3):295–304. doi: 10.1016/j.ijdevneu.2010.08.003. PubMed DOI PMC
Zhu W., Ma Y., Cadet P., et al. Presence of reticuline in rat brain: a pathway for morphine biosynthesis. Molecular Brain Research. 2003;117(1):83–90. doi: 10.1016/s0169-328x(03)00323-1. PubMed DOI
Laux-Biehlmann A., Mouheiche J., Vérièpe J., Goumon Y. Endogenous morphine and its metabolites in mammals: history, synthesis, localization and perspectives. Neuroscience. 2013;233:95–117. doi: 10.1016/j.neuroscience.2012.12.013. PubMed DOI
Cahlíková L., Hulová L., Hrabinová M., et al. Isoquinoline alkaloids as prolyl oligopeptidase inhibitors. Fitoterapia. 2015;103:192–196. doi: 10.1016/j.fitote.2015.04.004. PubMed DOI