The role of emerging elites in the formation and development of communities after the fall of the Roman Empire
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, historické články
Grantová podpora
856453
EC | ERC | HORIZON EUROPE European Research Council (ERC)
426551838
Deutsche Forschungsgemeinschaft (DFG)
2018/31/G/HS3/01159
Narodowe Centrum Nauki (NCN)
PubMed
39159385
PubMed Central
PMC11388374
DOI
10.1073/pnas.2317868121
Knihovny.cz E-zdroje
- Klíčová slova
- burial archaeology, isotope, late antiquity, mobility, paleogenomics,
- MeSH
- archeologie * MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- migrace lidstva dějiny MeSH
- římská říše * dějiny MeSH
- Check Tag
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- Geografické názvy
- Itálie MeSH
Elites played a pivotal role in the formation of post-Roman Europe on both macro- and microlevels during the Early Medieval period. History and archaeology have long focused on their description and identification based on written sources or through their archaeological record. We provide a different perspective on this topic by integrating paleogenomic, archaeological, and isotopic data to gain insights into the role of one such elite group in a Langobard period community near Collegno, Italy dated to the 6-8th centuries CE. Our analysis of 28 newly sequenced genomes together with 24 previously published ones combined with isotope (Sr, C, N) measurements revealed that this community was established by and organized around a network of biologically and socially related individuals likely composed of multiple elite families that over time developed into a single extended pedigree. The community also included individuals with diverse genetic ancestries, maintaining its diversity by integrating newcomers and groups in later stages of its existence. This study highlights how shifts in political power and migration impacted the formation and development of a small rural community within a key region of the former Western Roman Empire after its dissolution and the emergence of a new kingdom. Furthermore, it suggests that Early Medieval elites had the capacity to incorporate individuals from varied backgrounds and that these elites were the result of (political) agency rather than belonging to biologically homogeneous groups.
Arne Faculty of Arts Masaryk University Brno střed 602 00 Czech Republic
Climate Change and History Research Initiative Princeton University Princeton NJ 08542
Department of Bioarchaeology Faculty of Archaeology University of Warsaw Warszawa 00 927 Poland
Department of Biology University of Florence Firenze 12 50122 Italy
Department of Ecology and Evolution Stony Brook University Stony Brook NY 11794
Department of History Archaeology and Art History Catholic University Milan Milan 20103 Italy
Dipartimento di Scienze della Vita e dell'Ambiente Università di Cagliari Cagliari 09126 Italy
Institute of History Jagiellonian University in Krakow Kraków 31 007 Poland
Max Planck Institute for Biogeochemistry Jena 07745 Germany
Max Planck Institute of Geoanthropology Jena 07743 Germany
School of Historical Studies Institute for Advanced Study Princeton NJ 08540
Zobrazit více v PubMed
Bougard F., Goetz H.-W., Le Jan R., Eds., Théorie et pratiques des élites au Haut Moyen Âge. Conception, perception et réalisation sociale (Brepolis, 2011).
Ames K., "The archaeology of rank" in Handbook of Archaeological Theories, Bentley R. A., Maschner H. D. G., Chippindale C., Eds. (AltaMira, 2007), pp. 487–513.
Loveluck C., "Problems of the definition and conceptualisation of early medieval elites, AD 450–900: The dynamics of the archaeological evidence" in Théorie et Pratiques Des élites Au Haut Moyen Âge. Conception, Perception et Réalisation Sociale, Bougard F., Goetz H.-W., Le Jan R., Eds. (Brepols Publishers, 2011), pp. 21–68.
Bougard F., Bührer-Thierry G., Le Jan R., Elites in the early middle ages: identities, strategies, mobility*. Ann. Histoire, Sci. Sociales (Engl. Ed.) 68, 733–768 (2013).
Halsall G., Warfare and Society in the Barbarian West, (Taylor & Francis, 2003), 10.4324/9780203930076/warfare-society-barbarian-west-450-900-guy-halsall (September 5, 2023) pp. 450–900. DOI
Jarnut J. “Langobardische Eliten in der sozialen Praxis” in Théorie et Pratiques Des élites Au Haut Moyen Âge. Conception, Perception et Réalisation Sociale, Bougard F., Goetz H.-W., Le Jan R., Eds. (Brepols, 2011), pp. 283–290.
Wood I. (general editor), Ed., Transformation of the Roman World Series (Brill, 1997–2004).
Christie N., The Lombards: The Ancient Longobards (Wiley, 1999).
Wickham C., Framing the Early Middle Ages: Europe and the Mediterranean (OUP Oxford, 2006), pp. 400–800.
Fabbro E., Warfare and the Making of Early Medieval Italy (Routledge, 2020), 568–652.
Pejrani Baricco L., Ed., Presenze longobarde: Collegno nell’alto Medioevo (Soprintendenza per i Beni Archeologici del Piemonte, 2004).
Pejrani Baricco L. “Il Piemonte tra Ostrogoti e Longobardi” in I Longobardi. Dalla Caduta Dell’impero All’alba dell’Italia, Brogiolo G. P., Chavarria Arnau A., Eds. (Silvana, 2007), pp. 255–267.
Amorim C. E. G., et al. , Understanding 6th-century barbarian social organization and migration through paleogenomics. Nat. Commun. 9, 3547 (2018). PubMed PMC
Bedini E., Bertoldi F., “Aspetto fisico, stile di vita e stato di salute del gruppo umano” in Presenze Longobarde: Collegno Nell’alto Medioevo, Pejrani Baricco L., Ed. (Soprintendenza per i Beni Archeologici del Piemonte, 2004), pp. 217–236.
Brownlee E. C., The dead and their possessions: The declining agency of the cadaver in early medieval europe. Eur. J. Archaeol. 23, 406–427 (2020).
Lazaridis I., et al. , Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016). PubMed PMC
Lazaridis I., et al. , Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014). PubMed PMC
Biagini S. A., et al. , People from Ibiza: An unexpected isolate in the Western Mediterranean. Eur. J. Hum. Genet. 27, 941–951 (2019). PubMed PMC
Wang C.-C., et al. , Genomic insights into the formation of human populations in East Asia. Nature 591, 413–419 (2021). PubMed PMC
Patterson N., et al. , Ancient admixture in human history. Genetics 192, 1065–1093 (2012). PubMed PMC
Jeong C., et al. , The genetic history of admixture across inner Eurasia. Nat. Ecol. Evol. 3, 966–976 (2019). PubMed PMC
Flegontov P., et al. , Palaeo-Eskimo genetic ancestry and the peopling of Chukotka and North America. Nature 570, 236–240 (2019). PubMed PMC
Nelson M. R., et al. , The population reference sample, POPRES: A resource for population, disease, and pharmacological genetics research. Am. J. Hum. Genet. 83, 347–358 (2008). PubMed PMC
Jørsboe E., Hanghøj K., Albrechtsen A., fastNGSadmix: Admixture proportions and principal component analysis of a single NGS sample. Bioinformatics 33, 3148–3150 (2017). PubMed
Jørsboe E., Hanghøj K., Albrechtsen A., fastNGSadmix: admixture proportions and principal component analysis of a single NGS sample. Bioinformatics 33, 3148–3150 (2017). PubMed
Vyas D. N., et al. , Fine-scale sampling uncovers the complexity of migrations in 5th-6th century Pannonia. Curr. Biol. 33, 3951–3961.e11 (2023). PubMed
Antonio M. L., et al. , Stable population structure in Europe since the Iron Age, despite high mobility. eLife, 13, e79714 (2022). PubMed PMC
Lipatov M., Sanjeev K., Patro R., Veeramah K. R., Maximum likelihood estimation of biological relatedness from low coverage sequencing data. bioRxiv 023374 (2015).
Monroy Kuhn J. M., Jakobsson M., Günther T., Estimating genetic kin relationships in prehistoric populations. PLoS One 13, e0195491 (2018). PubMed PMC
Popli D., Peyrégne S., Peter B. M., KIN: A method to infer relatedness from low-coverage ancient DNA. Genome Biol. 24, 10 (2023). PubMed PMC
Ringbauer H., et al. , Accurate detection of identity-by-descent segments in human ancient DNA. Nat. Genet. 56, 143–151 (2024). PubMed PMC
Ringbauer H., Novembre J., Steinrücken M., Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021). PubMed PMC
Pohl W. “Alboin und der Langobardenzug nach Italien. Aufstieg und Fall eines Barbarenkönigs” in Sie Schufen Europa. Historische Portraits von Konstantin Bis Karl Dem Großen, Meier M. (hrsg), Ed. (C.H. Beck, 2007), pp. 216–227.
Borgolte M., "Eine langobardische ‘Wanderlawine’ vom Jahr 568? Zur Kritik historiografische Zeugnisse der Migrationsperiode" in Mittelalter in der größeren Welt: Essays zur Geschichtsschreibung und Beiträge zur Forschung, Borgolte M., Ed. (Walter de Gruyter, 2014), pp. 475–492.
Giostra C., “La struttura sociale nelle necropoli longobarde italiane: una lettura archeologica” in Archeologia dei Longobardi: dati e metodi per nuovi percorsi di analisi, Atti del I Incontro per l’Archeologia barbarica (Milano, 2 maggio 2016), Archeologia Barbarica, Giostra C., Ed. (S.A.P. Società Archeologica, 2017), pp. 83–112.
De Vingo P., From Tribe to Province to State: An Historical-ethnographic and Archaeological Perspective for Reinterpreting the Settlement Processes of the Germanic Populations in Western Europe Between Late Antiquity and the Early Middle Ages (BAR Publishing, 2010).
Herlihy D., Medieval Households (Harvard University Press, 1985).
Hummer H., Visions of Kinship in Medieval Europe (Oxford University Press, 2018).
Barbiera I., Changing Lands in Changing Memories. Migration and Identity during the Lombard Invasions (All’Insegnia del Giglio, 2005).
Giostra C., Genetica e statistica per una migliore conoscenza della cultura materiale barbarica. Hortus Artium Mediev. 28, 234–252 (2022).
Brogiolo G. P., Oratori funerari tra VII e VIII secolo nelle campagne transpadane. Hortus Artium Medievalium 8, 9–31 (2002).
Bierbrauer V., Langobardische Kirchengräber. Bericht der Bayerischen Bodendenkmalpflege 41, 225–242 (2002).
Costambeys M., "Kinship, gender and property in Lombard Italy" in The Langobards before the Frankish Conquest. An Ethongraphic Perspective, Studies in Historical Archaeoethnology, Ausenda G., Delogu P., Wickham C., Eds. (The Boydell Press, 2009), pp. 69–94.
Sirak K., et al. , Human auditory ossicles as an alternative optimal source of ancient DNA. Genome Res. 30, 427–436 (2020). PubMed PMC
Rohland N., Harney E., Mallick S., Nordenfelt S., Reich D., Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20130624, (2015). PubMed PMC
Dabney J., et al. , Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U.S.A. 110, 15758–15763 (2013). PubMed PMC
Kircher M., Analysis of high-throughput ancient DNA sequencing data. Methods Mol. Biol. 840, 197–228 (2012). PubMed
Danecek P., et al. , Twelve years of SAMtools and BCFtools. Gigascience 10, giab008 (2021). PubMed PMC
McKenna A., et al. , The genome analysis toolkit: A mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010). PubMed PMC
Ginolhac A., Rasmussen M., Gilbert M. T. P., Willerslev E., Orlando L., mapDamage: Testing for damage patterns in ancient DNA sequences. Bioinformatics 27, 2153–2155 (2011). PubMed
Korneliussen T. S., Albrechtsen A., Nielsen R., ANGSD: Analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014). PubMed PMC
Renaud G., Slon V., Duggan A. T., Kelso J., Schmutzi: Estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015). PubMed PMC
Briggs A. W., et al. , Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318–321 (2009). PubMed
Fan L., Yao Y.-G., An update to MitoTool: Using a new scoring system for faster mtDNA haplogroup determination. Mitochondrion 13, 360–363 (2013). PubMed
Francalacci P., et al. , Low-pass DNA sequencing of 1200 Sardinians reconstructs European Y-chromosome phylogeny. Science 341, 565–569 (2013). PubMed PMC
Karmin M., et al. , A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Res. 25, 459–466 (2015). PubMed PMC
Poznik G. D., et al. , Sequencing Y chromosomes resolves discrepancy in time to common ancestor of males versus females. Science 341, 562–565 (2013). PubMed PMC
Price A. L., et al. , Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006). PubMed
Patterson N., Price A. L., Reich D., Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006). PubMed PMC
Haak W., et al. , Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015). PubMed PMC
Mathieson I., et al. , Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015). PubMed PMC
Allentoft M. E., et al. , Population genomics of Bronze Age Eurasia. Nature 522, 167–172 (2015). PubMed
Broushaki F., et al. , Early Neolithic genomes from the eastern Fertile Crescent. Science 353, 499–503 (2016). PubMed PMC
Gamba C., et al. , Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 5, 5257 (2014). PubMed PMC
Hofmanová Z., et al. , Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl. Acad. Sci. U.S.A. 113, 6886–6891 (2016). PubMed PMC
Mathieson I., et al. , The genomic history of southeastern Europe. Nature 555, 197–203 (2018). PubMed PMC
Olalde I., et al. , Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014). PubMed PMC
van de Loosdrecht M., et al. , Pleistocene North African genomes link Near Eastern and sub-Saharan African human populations. Science 360, 548–552 (2018). PubMed
Fu Q., et al. , The genetic history of Ice Age Europe. Nature 534, 200–205 (2016). PubMed PMC
Danecek P., et al. , The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011). PubMed PMC
Kunsch H. R., The jackknife and the bootstrap for general stationary observations. Ann. Stat. 17, 1217–1241 (1989).
Rubinacci S., Ribeiro D. M., Hofmeister R. J., Delaneau O., Publisher Correction: Efficient phasing and imputation of low-coverage sequencing data using large reference panels. Nat. Genet. 53, 412 (2021). PubMed
Jacomy M., Venturini T., Heymann S., Bastian M., ForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi software. PLoS One 9, e98679 (2014). PubMed PMC
Bastian M., Heymann S., Jacomy M., Gephi: An open source software for exploring and manipulating networks. ICWSM 3, 361–362 (2009).
Longin R., New method of collagen extraction for radiocarbon dating. Nature 230, 241–242 (1971). PubMed
Steinhof A., Altenburg M., Machts H., Sample preparation at the jena 14C laboratory. Radiocarbon 59, 815–830 (2017).
Wacker L., et al. , MICADAS: Routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262 (2010).
Steinhof A., Data analysis at the jena 14C laboratory. Radiocarbon 55, 282–293 (2013).
Dufour E., et al. , Oxygen and strontium isotopes as provenance indicators of fish at archaeological sites: The case study of Sagalassos. SW Turkey. J. Archaeol. Sci. 34, 1226–1239 (2007).
Pin C., Briot D., Bassin C., Poitrasson F., Concomitant separation of strontium and samarium-neodymium for isotopic analysis in silicate samples, based on specific extraction chromatography. Anal. Chim. Acta 298, 209–217 (1994).
Dopieralska J., Neodymium Isotopic Composition of Conodonts as a Palaeoceanographic Proxy in the Variscan Oceanic System (Justus-Liebig-Universität Gießen, 2003).
Brown T. A., Nelson D. E., Vogel J. S., Southon J. R., Improved collagen extraction by modified longin method. Radiocarbon 30, 171–177 (1988).
Ambrose S. H., Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
DeNiro M. J., Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).
Guiry E. J., Szpak P., Improved quality control criteria for stable carbon and nitrogen isotope measurements of ancient bone collagen. J. Archaeol. Sci. 132, 105416 (2021).
Tian Y., et al. , Targeted-Capture data from Collegno. NCBI. https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1023512. Deposited 3 October 2023.