5-Azacytidine mediated reactivation of silenced transgenes in potato (Solanum tuberosum) at the whole plant level
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28510781
DOI
10.1007/s00299-017-2155-7
PII: 10.1007/s00299-017-2155-7
Knihovny.cz E-zdroje
- Klíčová slova
- 5-Azacytidine, De novo regeneration, Methylation, Reactivation, TGS, Transgene silencing,
- MeSH
- azacytidin farmakologie MeSH
- geneticky modifikované rostliny účinky léků genetika metabolismus MeSH
- metylace DNA účinky léků genetika MeSH
- regulace genové exprese u rostlin účinky léků genetika MeSH
- Solanum tuberosum účinky léků genetika metabolismus MeSH
- transgeny účinky léků genetika MeSH
- umlčování genů MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- azacytidin MeSH
- zelené fluorescenční proteiny MeSH
Transient 5-azacytidine treatment of leaf explants from potato plants with transcriptionally silenced transgenes allows de novo regeneration of plants with restored transgene expression at the whole plant level. Transgenes introduced into plant genomes frequently become silenced either at the transcriptional or the posttranscriptional level. Transcriptional silencing is usually associated with DNA methylation in the promoter region. Treatments with inhibitors of maintenance DNA methylation were previously shown to allow reactivation of transcriptionally silenced transgenes in single cells or tissues, but not at the whole plant level. Here we analyzed the effect of DNA methylation inhibitor 5-azacytidine (AzaC) on the expression of two silenced reporter genes encoding green fluorescent protein (GFP) and neomycin phosphotransferase (NPTII) in potato plants. Whereas no obvious reactivation was observed in AzaC-treated stem cuttings, transient treatment of leaf segments with 10 μM AzaC and subsequent de novo regeneration of shoots on the selective medium with kanamycin resulted in the production of whole plants with clearly reactivated expression of previously silenced transgenes. Reactivation of nptII expression was accompanied by a decrease in cytosine methylation in the promoter region of the gene. Using the plants with reactivated GFP expression, we found that re-silencing of this transgene can be accidentally triggered by de novo regeneration. Thus, testing the incidence of transgene silencing during de novo regeneration could be a suitable procedure for negative selection of transgenic lines (insertion events) which have an inclination to be silenced. Based on our analysis of non-specific inhibitory effects of AzaC on growth of potato shoots in vitro, we estimated that AzaC half-life in the culture media is approximately 2 days.
Zobrazit více v PubMed
J Cell Sci. 2004 Feb 29;117(Pt 6):943-54 PubMed
Plant Cell Rep. 2016 Jan;35(1):77-89 PubMed
J Exp Bot. 2005 Nov;56(421):2907-14 PubMed
Mol Genet Genomics. 2009 Sep;282(3):319-28 PubMed
Plant Cell Physiol. 2007 Apr;48(4):638-47 PubMed
Proc Natl Acad Sci U S A. 2002 Dec 10;99 Suppl 4:16499-506 PubMed
New Phytol. 2009 Dec;184(4):851-64 PubMed
Neurosci Lett. 2003 Mar 13;339(1):62-6 PubMed
Genetics. 2003 Mar;163(3):1109-22 PubMed
Nucleic Acids Res. 1981 Jun 25;9(12):2933-47 PubMed
Plant J. 2007 Sep;51(5):779-91 PubMed
Plant Cell Rep. 2012 Aug;31(8):1449-61 PubMed
Nature. 2008 Mar 13;452(7184):215-9 PubMed
Plant Mol Biol. 2000 Jun;43(2-3):243-60 PubMed
Cell Biochem Funct. 2016 Jul;34(5):289-98 PubMed
PLoS One. 2010 Feb 02;5(2):e9001 PubMed
Cell. 2008 May 2;133(3):523-36 PubMed
Ann Bot. 2010 Oct;106(4):565-72 PubMed
Plant Mol Biol. 1992 Oct;20(1):103-12 PubMed
Nucleic Acids Res. 1985 Jul 11;13(13):4777-88 PubMed
Plant Mol Biol. 1998 Mar;36(4):521-8 PubMed
Plant Mol Biol. 2000 May;43(1):67-82 PubMed
Nature. 2009 Sep 17;461(7262):427-30 PubMed
Clin Cancer Res. 2009 Jun 15;15(12):3927-37 PubMed
Mol Gen Genet. 1996 Mar 7;250(4):483-90 PubMed
Ann Bot. 2012 Feb;109(2):453-62 PubMed
Plant Cell. 2007 Mar;19(3):943-58 PubMed
Plant Physiol. 2009 Mar;149(3):1493-504 PubMed
Mol Cell Biol. 2005 Jun;25(11):4727-41 PubMed
J Pharm Sci. 1981 Nov;70(11):1228-32 PubMed
Curr Opin Plant Biol. 2014 Apr;18:1-8 PubMed
Theor Appl Genet. 2003 May;106(8):1396-408 PubMed
Curr Opin Oncol. 2005 Jan;17(1):55-60 PubMed
Plant Cell Physiol. 2012 May;53(5):857-68 PubMed
Plant Physiol. 2003 Nov;133(3):1240-50 PubMed
J Med Chem. 1978 Feb;21(2):204-8 PubMed
Curr Opin Plant Biol. 2008 Oct;11(5):554-9 PubMed
PLoS Genet. 2012;8(10):e1002988 PubMed
Mol Plant. 2016 Jun 6;9(6):826-36 PubMed
Plant J. 2008 Jun;54(6):1049-62 PubMed
BMC Bioinformatics. 2008 Sep 11;9:371 PubMed
Science. 2010 May 14;328(5980):916-9 PubMed
FEBS Lett. 2000 Feb 4;467(1):47-51 PubMed
Theor Appl Genet. 2005 Jun;111(1):136-49 PubMed
Plant Cell Rep. 2012 Dec;31(12):2165-76 PubMed
Nature. 2001 Jan 18;409(6818):363-6 PubMed
Proc Natl Acad Sci U S A. 1984 Nov;81(22):6993-7 PubMed
Plant J. 2009 Feb;57(3):542-54 PubMed
Mol Plant Microbe Interact. 1999 Feb;12(2):103-11 PubMed
Plant Methods. 2012 Mar 19;8:10 PubMed
Cell. 2012 Sep 28;151(1):194-205 PubMed
Epigenetics for Crop Improvement in Times of Global Change