Identification and Characterization of Anaplasma phagocytophilum Proteins Involved in Infection of the Tick Vector, Ixodes scapularis
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26340562
PubMed Central
PMC4560377
DOI
10.1371/journal.pone.0137237
PII: PONE-D-15-14895
Knihovny.cz E-zdroje
- MeSH
- Anaplasma phagocytophilum MeSH
- anotace sekvence MeSH
- bakteriální proteiny genetika metabolismus MeSH
- chaperon hsp60 genetika metabolismus MeSH
- fyziologický stres MeSH
- gastrointestinální trakt mikrobiologie MeSH
- interakce hostitele a patogenu MeSH
- klíště mikrobiologie MeSH
- membránové proteiny genetika metabolismus MeSH
- proteiny tepelného šoku HSP70 genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- regulace genové exprese MeSH
- signální transdukce MeSH
- slinné žlázy mikrobiologie MeSH
- stanovení celkové genové exprese MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- chaperon hsp60 MeSH
- membránové proteiny MeSH
- proteiny tepelného šoku HSP70 MeSH
- proteom MeSH
Anaplasma phagocytophilum is an emerging zoonotic pathogen transmitted by Ixodes scapularis that causes human granulocytic anaplasmosis. Here, a high throughput quantitative proteomics approach was used to characterize A. phagocytophilum proteome during rickettsial multiplication and identify proteins involved in infection of the tick vector, I. scapularis. The first step in this research was focused on tick cells infected with A. phagocytophilum and sampled at two time points containing 10-15% and 65-71% infected cells, respectively to identify key bacterial proteins over-represented in high percentage infected cells. The second step was focused on adult female tick guts and salivary glands infected with A. phagocytophilum to compare in vitro results with those occurring during bacterial infection in vivo. The results showed differences in the proteome of A. phagocytophilum in infected ticks with higher impact on protein synthesis and processing than on bacterial replication in tick salivary glands. These results correlated well with the developmental cycle of A. phagocytophilum, in which cells convert from an intracellular reticulated, replicative form to the nondividing infectious dense-core form. The analysis of A. phagocytophilum differentially represented proteins identified stress response (GroEL, HSP70) and surface (MSP4) proteins that were over-represented in high percentage infected tick cells and salivary glands when compared to low percentage infected cells and guts, respectively. The results demonstrated that MSP4, GroEL and HSP70 interact and bind to tick cells, thus playing a role in rickettsia-tick interactions. The most important finding of these studies is the increase in the level of certain bacterial stress response and surface proteins in A. phagocytophilum-infected tick cells and salivary glands with functional implication in tick-pathogen interactions. These results gave a new dimension to the role of these stress response and surface proteins during A. phagocytophilum infection in ticks. Characterization of Anaplasma proteome contributes information on host-pathogen interactions and provides targets for development of novel control strategies for pathogen infection and transmission.
Zobrazit více v PubMed
Dumler JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, Ray SC, et al. Reorganization of the genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions subjective synonyms of Ehrlichia phagocytophila . Int J Syst Evol Microbiol. 2001; 51: 2145–2165. PubMed
Stuen S. Anaplasma phagocytophilum—the most widespread tick-borne infection in animals in Europe. Vet Res Commun. 2010; 31: 79–84. PubMed
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum—a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013; 3: 31 10.3389/fcimb.2013.00031 PubMed DOI PMC
Severo MS, Pedra JH, Ayllón N, Kocan KM, de la Fuente J. Anaplasma In: Molecular Medical Microbiology (2nd edition). Yi-Wei Tang, Dongyou Liu, Poxton Ian R., Joseph D. Schwartzman, Sussman Max (Eds.). Chapter 110. Academic Press, Elsevier; 2014; pp. 2029–2038.
Ge Y, Rikihisa Y. Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell Microbiol. 2006; 8: 1406–1416. PubMed
Sukumaran B, Narasimhan S, Anderson JF, DePonte K, Marcantonio N, Krishnan MN, et al. An Ixodes scapularis protein required for survival of Anaplasma phagocytophilum in tick salivary glands. J Exp Med. 2006; 6: 1507–1517. PubMed PMC
Reichard MV, Roman RM, Kocan KM, Blouin EF, de la Fuente J, Snider TA, et al. Inoculation of white-tailed deer (Odocoileus virginianus) with Ap-V1 or NY-18 strains of Anaplasma phagocytophilum and microscopic demonstration of Ap-V1 in Ixodes scapularis adults that acquired infection from deer as nymphs. Vector Borne Zoonotic Dis. 2009; 9: 565–568. 10.1089/vbz.2008.0106 PubMed DOI
Rikihisa Y. Molecular pathogensis of Anaplasma phagocytophilum . Current Microbiol Rev. 2011; 24: 469–489. PubMed PMC
Severo MS, Stephens KD, Kotsyfakis M, Pedra JH. Anaplasma phagocytophilum: deceptively simple or simply deceptive? Future Microbiol. 2012; 7: 719–731. 10.2217/fmb.12.45 PubMed DOI PMC
Galindo RC, de la Fuente J. Transcriptomics data integration reveals Jak-STAT pathway as a common pathway affected by pathogenic intracellular bacteria in natural reservoir hosts. J Proteomics Bioinform. 2012; 5: 108–115.
Galindo RC, Ayllón N, Smrdel KS, Boadella M, Beltrán-Beck B, Mazariegos M, et al. Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection. Parasit Vectors. 2012; 5: 181 PubMed PMC
de la Fuente J, Kocan KM, Blouin EF, Zivkovic Z, Naranjo V, Almazán C, et al. Functional genomics and evolution of tick-Anaplasma interactions and vaccine development. Vet Parasitol. 2010; 167: 175–186. 10.1016/j.vetpar.2009.09.019 PubMed DOI
Zivkovic Z, Blouin EF, Manzano-Roman R, Almazán C, Naranjo V, Massung RF, et al. Anaplasma phagocytophilum and A. marginale elicit different gene expression responses in cultured tick cells. Comp Funct Genomics. 2009; 2009: 705034. PubMed PMC
Villar M, Ayllón N, Busby AT, Galindo RC, Blouin EF, Kocan KM, et al. Expression of heat shock and other stress response proteins in ticks and cultured tick cells in response to Anaplasma spp. infection and heat shock. Int J Proteomics. 2010; 2010: 657261 10.1155/2010/657261 PubMed DOI PMC
Ayllón N, Villar M, Busby AT, Kocan KM, Blouin EF, Bonzón-Kulichenko E, et al. Anaplasma phagocytophilum inhibits apoptosis and promotes cytoskeleton rearrangement for infection of tick cells. Infect Immun. 2013; 81: 2415–2425. 10.1128/IAI.00194-13 PubMed DOI PMC
Naranjo V, Ayllón N, Pérez de la Lastra JM, Galindo RC, Kocan KM, Blouin EF, et al. Reciprocal regulation of NF-kB (Relish) and Subolesin in the tick vector, Ixodes scapularis . PLoS ONE. 2013; 8(6): e65915 10.1371/journal.pone.0065915 PubMed DOI PMC
Hajdušek O, Šíma R, Ayllón N, Jalovecká M, Perner J, de la Fuente J, et al. Interaction of the tick immune system with transmitted pathogens. Front Cell Infect Microbiol. 2013; 3: 26 10.3389/fcimb.2013.00026 PubMed DOI PMC
Ge Y, Rikihisa Y. Identification of novel surface proteins of Anaplasma phagocytophilum by affinity purification and proteomics. J Bacteriol. 2007; 189: 7819–7828. PubMed PMC
Lin M, Kikuchi T, Brewer HM, Norbeck AD, Rikihisa Y. Global proteomic analysis of two tick-borne emerging zoonotic agents: Anaplasma phagocytophilum and Ehrlichia chaffeensis . Front Microbiol. 2011; 2: 24 10.3389/fmicb.2011.00024 PubMed DOI PMC
Troese MJ, Kahlon A, Ragland SA, Ottens AK, Ojogun N, Nelson KT, et al. Proteomic analysis of Anaplasma phagocytophilum during infection of human myeloid cells identifies a protein that is pronouncedly upregulated on the infectious dense-cored cell. Infect Immun. 2011; 79: 4696–4707. 10.1128/IAI.05658-11 PubMed DOI PMC
Mastronunzio JE, Kurscheid S, Fikrig E. Postgenomic analyses reveal development of infectious Anaplasma phagocytophilum during transmission from ticks to mice. J Bacteriol. 2012; 194: 2238–2247. 10.1128/JB.06791-11 PubMed DOI PMC
Brayton KA, Palmer GH, Brown WC. Genomic and proteomic approaches to vaccine candidate identification for Anaplasma marginale . Expert Rev Vaccines. 2006; 5: 95–101. PubMed
de la Fuente J, Blouin EF, Manzano-Roman R, Naranjo V, Almazán C, Perez de la Lastra JM, et al. Functional genomic studies of tick cells in response to infection with the cattle pathogen, Anaplasma marginale . Genomics. 2007; 90: 712–722. PubMed
Noh SM, Brayton KA, Brown WC, Norimine J, Munske GR, Davitt CM, et al. Composition of the surface proteome of Anaplasma marginale and its role in protective immunity induced by outer membrane immunization. Infect Immun. 2008; 76: 2219–2226. 10.1128/IAI.00008-08 PubMed DOI PMC
Kocan KM, de la Fuente J, Blouin EF. Advances toward understanding the molecular biology of the Anaplasma-tick interface. Front Biosci. 2008; 13: 7032–7045. PubMed
Ramabu SS, Ueti MW, Brayton KA, Baszler TV, Palmer GH. Identification of Anaplasma marginale proteins specifically upregulated during colonization of the tick vector. Infect Immun. 2010; 78: 3047–3052. 10.1128/IAI.00300-10 PubMed DOI PMC
de la Fuente J, García-García JC, Blouin EF, Kocan KM. Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. Int J Parasitol. 2001; 31: 145–153. PubMed
Sumner JW, Nicholson WL, Massung RF. PCR amplification and comparison of nucleotide sequences from the groESL heat shock operon of Ehrlichia species. J Clin Microbiol. 1997; 35: 2087–2092. PubMed PMC
Johnson JL. Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta. 2012; 1823: 607–613. 10.1016/j.bbamcr.2011.09.020 PubMed DOI
Seydlová G, Halada P, Fišer R, Toman O, Ulrych A, Svobodová J. DnaK and GroEL chaperones are recruited to the Bacillus subtilis membrane after short-term ethanol stress. J Appl Microbiol. 2012; 112: 765–774. 10.1111/j.1365-2672.2012.05238.x PubMed DOI
Scopio A, Johnson P, Laquerre A, Nelson DR. Subcellular localization and chaperone activities of Borrelia burgdorferi Hsp60 and Hsp70. J Bacteriol. 1994; 176: 6449–6456. PubMed PMC
Susin MF, Baldini RL, Gueiros-Filho F, Gomes SL. GroES/GroEL and DnaK/DnaJ have distinct roles in stress responses and during cell cycle progression in Caulobacter crescentus . J Bacteriol. 2006; 188: 8044–8053. PubMed PMC
Multhoff G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods. 2007; 43: 229–237. PubMed
Zhu H, Lee C, Zhang D, Wu W, Wang L, Fang X, et al. Surface-associated GroEL facilitates the adhesion of Escherichia coli to macrophages through lectin-like oxidized low-density lipoprotein receptor-1. Microbes Infect. 2013; 15: 172–180. 10.1016/j.micinf.2012.10.001 PubMed DOI
Kocan KM, de la Fuente J, Blouin EF, Garcia-Garcia JC. Adaptation of the tick-borne pathogen, Anaplasma marginale, for survival in cattle and ticks. Exp Appl Acarol. 2002; 28: 9–25. PubMed
de la Fuente J, Garcia-Garcia JC, Blouin EF, Kocan KM. Characterization of the functional domain of major surface protein 1a involved in adhesion of the rickettsia Anaplasma marginale to host cells. Vet Microbiol. 2003; 91: 265–283. PubMed
Blouin EF, Saliki JT, de la Fuente J, Garcia-Garcia JC, Kocan KM. Antibodies to Anaplasma marginale major surface proteins 1a and 1b inhibit infectivity for cultured tick cells. Vet Parasitol. 2003; 111: 247–260. PubMed
Garcia-Garcia JC, de la Fuente J, Blouin EF, Halbur T, Onet VC, Saliki JT, et al. Differential expression of the msp1α gene of Anaplasma marginale occurs in bovine erythrocytes and tick cells. Vet Microbiol. 2004; 98: 261–272. PubMed
Goulhen F, Hafezi A, Uitto VJ, Hinode D, Nakamura R, Grenier D, et al. Subcellular localization and cytotoxic activity of the GroEL-like protein isolated from Actinobacillus actinomycetemcomitans . Infect Immun. 1998; 66: 5307–5313. PubMed PMC
McBroom AJ, Kuehn MJ. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol Microbiol. 2007; 63: 545–558. PubMed PMC
Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM. Distinct pathogenesis and host responses during Infection of C. elegans by P. aeruginosa and S. aureus . PLoS Pathog. 2010; 6: e1000982 10.1371/journal.ppat.1000982 PubMed DOI PMC
Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010; 74: 81–94. 10.1128/MMBR.00031-09 PubMed DOI PMC
Low HH, Gubellini F, Rivera-Calzada A, Braun N, Connery S, Dujeancourt A, et al. Structure of a type IV secretion system. Nature. 2014; 508: 550–553. 10.1038/nature13081 PubMed DOI PMC
Niu H, Rikihisa Y, Yamaguchi M, Ohashi N. Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell Microbiol. 2006; 8: 523–534. PubMed
Lin M, den Dulk-Ras A, Hooykaas PJ, Rikihisa Y. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell Microbiol. 2007; 9: 2644–2657. PubMed
Sinclair SH, Rennoll-Bankert KE, Dumler JS. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genet. 2014; 5: 274 10.3389/fgene.2014.00274 PubMed DOI PMC
Meyer DF, Noroy C, Moumène A, Raffaele S, Albina E, Vachiéry N. Searching algorithm for type IV secretion system effectors 1.0: a tool for predicting type IV effectors and exploring their genomic context. Nucleic Acids Res. 2013; 41: 9218–9229. 10.1093/nar/gkt718 PubMed DOI PMC
Nogueira T, Springer M. Post-transcriptional control by global regulators of gene expression in bacteria. Curr Opin Microbiol. 2000; 3: 154–158. PubMed
Zhi N, Ohashi N, Rikihisa Y. Activation of a p44 pseudogene in Anaplasma phagocytophila by bacterial RNA splicing: a novel mechanism for post-transcriptional regulation of a multigene family encoding immunodominant major outer membrane proteins. Mol Microbiol. 2002; 46: 135–145. PubMed
Dunning Hotopp JC, Lin M, Madupu R, Crabtree J, Angiuoli SV, Eisen JA, et al. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2006; 2: e21 PubMed PMC
de la Fuente J, Ayoubi P, Blouin EF, Almazán C, Naranjo V, Kocan KM. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum . Cell Microbiol. 2005; 7: 549–559. PubMed
Munderloh UG, Jauron SD, Fingerle V, Leitritz L, Hayes SF, Hautman JM, et al. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J Clin Microbiol. 1999; 37: 2518–2524. PubMed PMC
Kocan KM, Busby AT, Allison RW, Breshears MA, Coburn L, Galindo RC, et al. Sheep experimentally-infected with a human isolate of Anaplasma phagocytophilum serve as a host for infection of Ixodes scapularis . Ticks Tick Borne Dis. 2012; 3: 147–153. 10.1016/j.ttbdis.2012.01.004 PubMed DOI
Villar M, Popara M, Ayllón N, Fernández de Mera IG, Mateos-Hernández L, Galindo RC, et al. A systems biology approach to the characterization of stress response in Dermacentor reticulatus tick unfed larvae. PLoS ONE. 2014; 9: e89564 10.1371/journal.pone.0089564 PubMed DOI PMC
Wisniewski J, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Meth. 2009; 6: 359–362. PubMed
Martínez-Bartolomé S, Navarro P, Martín-Maroto F, López-Ferrer D, Ramos-Fernández A, Villar M, et al. Properties of average score distributions of SEQUEST: the probability ratio method. Mol Cell Proteomics. 2008; 7: 1135–1145. 10.1074/mcp.M700239-MCP200 PubMed DOI
Navarro P, Vázquez J. A refined method to calculate False Discovery Rates for peptide identification using decoy databases. J Proteome Res. 2009; 8: 1792–1796. 10.1021/pr800362h PubMed DOI
Ayllón N, Villar V, Galindo RC, Kocan KM, Šíma R, López JA, et al. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis . PLoS Genet. 2015; 11: e1005120 10.1371/journal.pgen.1005120 PubMed DOI PMC
Lis K, Najm N, de la Fuente J, Fernández de Mera I, Zweygarth E, Pfister K, et al. Use of Percoll gradients to purify Anaplasma marginale (Rickettsiales: Anaplasmataceae) from tick cell cultures. Ticks Tick Borne Dis. 2014; 5: 511–515. 10.1016/j.ttbdis.2014.03.006 PubMed DOI
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol. 2005; 152: 36–51. PubMed
de la Fuente J, Almazán C, Blouin EF, Naranjo V, Kocan KM. Reduction of tick infections with Anaplasma marginale and A. phagocytophilum by targeting the tick protective antigen subolesin. Parasitol Res. 2006; 100: 85–91. PubMed
Ririe KM, Rasmussen RP, Wittwer CT. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem. 1997; 245: 154–160. PubMed
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT) method. Methods. 2001; 25: 402–408. PubMed
Karyotype changes in long-term cultured tick cell lines