Karyotype changes in long-term cultured tick cell lines
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P024270/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32778731
PubMed Central
PMC7417564
DOI
10.1038/s41598-020-70330-5
PII: 10.1038/s41598-020-70330-5
Knihovny.cz E-zdroje
- MeSH
- buněčné kultury metody MeSH
- buněčné linie MeSH
- Ixodidae genetika MeSH
- karyotyp MeSH
- klíšťata genetika růst a vývoj MeSH
- Ornithodoros genetika MeSH
- RNA ribozomální 16S genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- RNA ribozomální 16S MeSH
Tick cell lines are an easy-to-handle system for the study of viral and bacterial infections and other aspects of tick cellular processes. Tick cell cultures are often continuously cultivated, as freezing can affect their viability. However, the long-term cultivation of tick cells can influence their genome stability. In the present study, we investigated karyotype and genome size of tick cell lines. Though 16S rDNA sequencing showed the similarity between Ixodes spp. cell lines at different passages, their karyotypes differed from 2n = 28 chromosomes for parental Ixodes spp. ticks, and both increase and decrease in chromosome numbers were observed. For example, the highly passaged Ixodes scapularis cell line ISE18 and Ixodes ricinus cell lines IRE/CTVM19 and IRE/CTVM20 had modal chromosome numbers 48, 23 and 48, respectively. Also, the Ornithodoros moubata cell line OME/CTVM22 had the modal chromosome number 33 instead of 2n = 20 chromosomes for Ornithodoros spp. ticks. All studied tick cell lines had a larger genome size in comparison to the genomes of the parental ticks. Thus, highly passaged tick cell lines can be used for research purposes, but possible differences in encoded genetic information and downstream cellular processes, between different cell populations, should be taken into account.
Central European Institute of Technology Masaryk University Kamenice 5 62500 Brno Czech Republic
Department of General and Applied Biology São Paulo State University Rio Claro São Paulo Brazil
Zobrazit více v PubMed
Shi J, Hu Z, Deng F, Shen S. Tick-borne viruses. Virol. Sin. 2018;33:21–43. PubMed PMC
Sprong H, et al. Control of Lyme borreliosis and other Ixodes ricinus-borne diseases. Parasit. Vectors. 2018;11:145. PubMed PMC
Hönig V, et al. Ticks and tick-borne pathogens in South Bohemia (Czech Republic)-Spatial variability in Ixodes ricinus abundance, Borrelia burgdorferi and tick-borne encephalitis virus prevalence. Ticks Tick Borne Dis. 2015;6:559–567. PubMed
Honig, V. et al. Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol. Ecol.93, (2017). PubMed PMC
Bell-Sakyi L, Darby A, Baylis M, Makepeace BL. The Tick Cell Biobank: a global resource for in vitro research on ticks, other arthropods and the pathogens they transmit. Ticks Tick Borne Dis. 2018;9:1364–1371. PubMed PMC
Bell-Sakyi L, Attoui H. Virus discovery using tick cell lines. Evol. Bioinform. 2016;12:31–34. PubMed PMC
Villar M, et al. Identification and characterization of Anaplasma phagocytophilum proteins involved in infection of the tick vector, Ixodes scapularis. PLoS ONE. 2015;10:e0137237. PubMed PMC
Johnson N. Tick-virus interactions: toll sensing. Front. Cell. Infect. Microbiol. 2017;7:293. PubMed PMC
Kalil SP, et al. Immune-related redox metabolism of embryonic cells of the tick Rhipicephalus microplus (BME26) in response to infection with Anaplasma marginale. Parasit. Vectors. 2017;10:613. PubMed PMC
Sterba J, Vancova M, Sterbova J, Bell-Sakyi L, Grubhoffer L. The majority of sialylated glycoproteins in adult Ixodes ricinus ticks originate in the host, not the tick. Carbohydr. Res. 2014;389:93–99. PubMed
Koh-Tan HHC, Strachan E, Cooper K, Bell-Sakyi L, Jonsson NN. Identification of a novel β-adrenergic octopamine receptor-like gene (βAOR-like) and increased ATP-binding cassette B10 (ABCB10) expression in a Rhipicephalus microplus cell line derived from acaricide-resistant ticks. Parasit. Vectors. 2016;9:425. PubMed PMC
Mangia C, et al. Evaluation of the in vitro expression of ATP binding-cassette (ABC) proteins in an Ixodes ricinus cell line exposed to ivermectin. Parasit. Vectors. 2016;9:215. PubMed PMC
Mangia C, et al. Exposure to amitraz, fipronil and permethrin affects cell viability and ABC transporter gene expression in an Ixodes ricinus cell line. Parasit. Vectors. 2018;11:437. PubMed PMC
Kurtti TJ, et al. Transgene expression and silencing in a tick cell line: A model system for functional tick genomics. Insect Biochem. Mol. Biol. 2008;38:963–968. PubMed PMC
Tuckow AP, Temeyer KB. Discovery, adaptation and transcriptional activity of two tick promoters: construction of a dual luciferase reporter system for optimization of RNA interference in Rhipicephalus (Boophilus) microplus cell lines. Insect Mol. Biol. 2015;24:454–466. PubMed
Machado-Ferreira E, et al. Transgene expression in tick cells using Agrobacterium tumefaciens. Exp. Appl. Acarol. 2015;67:269–287. PubMed
Kusakisako K, et al. Transcriptional activities of two newly identified Haemaphysalis longicornis tick-derived promoter regions in the Ixodes scapularis tick cell line (ISE6) Insect Mol. Biol. 2018;27:590–602. PubMed
Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J. Parasitol. 1994;80:533–543. PubMed
Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TN. Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J. Invertebr. Pathol. 1996;67:318–321. PubMed
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. PubMed
Simser JA, et al. Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl. Environ. Microbiol. 2002;68:4559–4566. PubMed PMC
Bell-Sakyi L, Růzek D, Gould EA. Cell lines from the soft tick Ornithodoros moubata. Exp. Appl. Acarol. 2009;49:209–219. PubMed PMC
Oliver JH, et al. Conspecificity of the ticks Ixodes scapularis and I. dammini (Acari: Ixodidae) J. Med. Entomol. 1993;30:54–63. PubMed
Chen C, Munderloh UG, Kurtti TJ. Cytogenetic characteristics of cell lines from Ixodes scapularis (Acari: Ixodidae) J. Med. Entomol. 1994;31:425–434. PubMed
Meyer JM, Kurtti TJ, Van Zee JP, Hill CA. Genome organization of major tandem repeats in the hard tick, Ixodes scapularis. Chromosom. Res. 2010;18:357–370. PubMed
Kahn J. Cytotaxonomy of ticks. J. Cell Sci. 1964;3:105.
Gothe R. The sex chromatin body and its importance for the demonstration of heterochromosomal conditions in Ornithodoros moubata (Murray, 1877) Onderstepoort J. Vet. Res. 1966;33:107–114. PubMed
Kurtti TJ, Munderloh UG, Ahlstrand GG. Tick tissue and cell culture in vector research. Adv. Dis. Vector Res. 1988;5:87–109.
Bastos CV, Das Vasconcelos MMC, Ribeiro MFB, Passos LMF. Use of refrigeration as a practical means to preserve viability of in vitro-cultured IDE8 tick cells. Exp. Appl. Acarol. 2006;39:347–352. PubMed
Lallinger G, Zweygarth E, Bell-Sakyi L, Passos LM. Cold storage and cryopreservation of tick cell lines. Parasit. Vectors. 2010;3:37. PubMed PMC
Loginov DS, et al. Tissue-specific signatures in tick cell line MS profiles. Parasit. Vectors. 2019;12:212. PubMed PMC
Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J. Comp. Pathol. 2004;130:285–293. PubMed
Mattila JT, Burkhardt NY, Hutcheson HJ, Munderloh UG, Kurtti TJ. Isolation of cell lines and a rickettsial endosymbiont from the soft tick Carios capensis (Acari: Argasidae: Ornithodorinae) J. Med. Entomol. 2007;44:1091–1101. PubMed
Varma MGR, Pudney M, Leake CJ. The establishment of three cell lines from the tick Rhipicephalus appendiculatus (Acari: Ixodidae) and their infection with some arboviruses. J. Med. Entomol. 1975;11:698–706. PubMed
Holman PJ. Partial characterization of a unique female diploid cell strain from the tick Boophilus microplus (Acari: Ixodidae) J. Med. Entomol. 1981;18:84–88. PubMed
Crawford AM, Parslow M, Sheehan C. Crawfordi AM (1983) Changes in the karyotype of the cell line, DSIR-HA-1179, and a comparison with that of its parent insect, Heteronychus arator (F.) (Coleoptera: Scarabaeidae) New Zeal. J. Zool. 1983;10:405–408.
Goblirsch MJ, Spivak MS, Kurtti TJ. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues. PLoS ONE. 2013;8:e69831. PubMed PMC
Dolfini SF. Karyotype evolution in cell lines of Drosophila melanogaster. Chromosoma. 1976;58:73–86. PubMed
Halfer C. Karyotypic evolution in an originally XY cell line of Drosophila melanogaster: a case of heterochromatin increase in vitro. Chromosoma. 1978;68:149–163. PubMed
Debec A. Evolution of karyotype in haploid cell lines of Drosophila melanogaster. Exp. Cell Res. 1984;151:236–246. PubMed
Lee H, et al. DNA copy number evolution in Drosophila cell lines. Genome Biol. 2014;15:R70. PubMed PMC
Gerbal M, et al. Adaptation of an insect cell line of Spodoptera frugiperda to grow at 37 degrees C: characterization of an endodiploid clone. Vitro Cell. Dev. Biol. Anim. 2000;36:117–124. PubMed
Dolezel J, Bartos J, Voglmayr H, Greilhuber J. Letter to the editor. Nuclear DNA content and genome size of trout and human. Cytometry. 2003;51A:127–128. PubMed
Geraci NS, Johnston JS, Robinson JP, Wikel SK, Hill CA. Variation in genome size of argasid and ixodid ticks. Mol. Biol. 2007;37:399–408. PubMed
Cramaro WJ, Hunewald OE, Bell-Sakyi L, Muller CP. Genome scaffolding and annotation for the pathogen vector Ixodes ricinus by ultra-long single molecule sequencing. Parasit. Vectors. 2017;10:71. PubMed PMC
Vítková M, Král J, Traut W, Zrzavý J, Marec F. The evolutionary origin of insect telomeric repeats, (TTAGG) N. Chromosom. Res. 2005;13:145–156. PubMed
Lustig AJ. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Nat. Rev. Genet. 2003;4:916–923. PubMed
Jankowska M, et al. Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma. 2015;124:519–528. PubMed
Muraki K, Nyhan K, Han L, Murnane JP. Mechanisms of telomere loss and their consequences for chromosome instability. Front. Oncol. 2012;2:135. PubMed PMC
Hughes P, Marshall D, Reid Y, Parkes H, Gelber C. The costs of using unauthenticated, over-passaged cell lines: how much more data do we need? Biotechniques. 2007;43:575. PubMed
Bell-Sakyi L. Continuous cell lines from the tick Hyalomma anatolicum anatolicum. J. Parasitol. 1991;77:1006. PubMed
Lockwood APM. “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp. Biochem. Physiol. 1961;2:241–289. PubMed
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. PubMed PMC
Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019;37:907–915. PubMed PMC
Bankevich A, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. PubMed PMC
Chojnacki S, Cowley A, Lee J, Foix A, Lopez R. Programmatic access to bioinformatics tools from EMBL-EBI update: 2017. Nucleic Acids Res. 2017;45:W550–W553. PubMed PMC
Sneath, P. H. A. & Sokal, R. R. Numerical taxonomy. The principles and practice of numerical classification. 263–268 (San Francisco : W. H. Freeman, 1973).
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. PubMed PMC
Galbraith DW, et al. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science. 1983;220:1049–1051. PubMed
Ijdo JW, Wells RA, Baldini A, Reeders ST. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. PubMed PMC
Kato A, Albert P, Vega J, Birchler J. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech. Histochem. 2006;81:71–78. PubMed
Cabral-De-Mello DC, Moura RC, Martins C. Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity (Edinb). 2010;104:393–400. PubMed