Tissue-specific signatures in tick cell line MS profiles
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
LTARF 18021
Ministerstvo Školství, Mládeže a Tělovýchovy
18-27204S
Grantová Agentura České Republiky (CZ)
CZ.02.1.01/0.0/0.0/15_003/0000441
European Regional Development Fund Project
14.616.21.0094
Ministry of Science and Higher Education of the Russian Federation
PubMed
31060584
PubMed Central
PMC6503378
DOI
10.1186/s13071-019-3460-5
PII: 10.1186/s13071-019-3460-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biotyping, MALDI-TOF MS, Tick, Tick cell line, Tick organs,
- MeSH
- 2D gelová elektroforéza MeSH
- buněčné linie * cytologie metabolismus MeSH
- hmyzí proteiny metabolismus MeSH
- klíště cytologie MeSH
- proteomika MeSH
- slinné žlázy cytologie MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice * MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- hmyzí proteiny MeSH
BACKGROUND: The availability of tick in vitro cell culture systems has facilitated many aspects of tick research, including proteomics. However, certain cell lines have shown a tissue-specific response to infection. Thus, a more thorough characterization of tick cell lines is necessary. Proteomic comparative studies of various tick cell lines will contribute to more efficient application of tick cell lines as model systems for investigation of host-vector-pathogen interactions. RESULTS: Three cell lines obtained from a hard tick, Ixodes ricinus, and two from I. scapularis were investigated. A cell mass spectrometry approach (MALDI-TOF MS) was applied, as well as classical proteomic workflows. Using PCA, tick cell line MS profiles were grouped into three clusters comprising IRE/CTVM19 and ISE18, IRE11 and IRE/CTVM20, and ISE6 cell lines. Two other approaches confirmed the results of PCA: in-solution digestion followed by nanoLC-ESI-Q-TOF MS/MS and 2D electrophoresis. The comparison of MS spectra of the cell lines and I. ricinus tick organs revealed 29 shared peaks. Of these, five were specific for ovaries, three each for gut and salivary glands, and one for Malpighian tubules. For the first time, characteristic peaks in MS profiles of tick cell lines were assigned to proteins identified in acidic extracts of corresponding cell lines. CONCLUSIONS: Several organ-specific MS signals were revealed in the profiles of tick cell lines.
Zobrazit více v PubMed
de la Fuente J. Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci. 2008;1:6938–6946. doi: 10.2741/3200. PubMed DOI
Sonenshine DE, Roe RM. Biology of ticks. 2. New York: Oxford University Press; 2014.
Dantas-Torres F. Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. Int J Parasitol Parasites Wildl. 2015;4:452–461. doi: 10.1016/j.ijppaw.2015.07.001. PubMed DOI PMC
Bell-Sakyi L, Zweygarth E, Blouin EF, Gould EA, Jongejan F. Tick cell lines: tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI
Bell-Sakyi L, Kohl A, Bente DA, Fazakerley JK. Tick cell lines for study of Crimean-Congo hemorrhagic fever virus and other arboviruses. Vector Borne Zoonotic Dis. 2012;12:769–781. doi: 10.1089/vbz.2011.0766. PubMed DOI PMC
Alberdi P, Mansfield KL, Manzano-Roman R, Cook C, Ayllon N, Villar M, et al. Tissue-specific signatures in the transcriptional response to Anaplasma phagocytophilum infection of Ixodes scapularis and Ixodes ricinus tick cell lines. Front Cell Infect Microbiol. 2016;6:20. doi: 10.3389/fcimb.2016.00020. PubMed DOI PMC
Weisheit S, Villar M, Tykalová H, Popara M, Loecherbach J, Watson M, et al. Ixodes scapularis and Ixodes ricinus tick cell lines respond to infection with tick-borne encephalitis virus: transcriptomic and proteomic analysis. Parasit Vectors. 2015;8:599. doi: 10.1186/s13071-015-1210-x. PubMed DOI PMC
Grabowski JM, Perera R, Roumani AM, Hedrick VE, Inerowicz HD, Hill CA, et al. Changes in the proteome of Langat-infected Ixodes scapularis ISE6 cells: metabolic pathways associated with flavivirus infection. PLoS Negl Trop Dis. 2016;10:e0004180. doi: 10.1371/journal.pntd.0004180. PubMed DOI PMC
Mansfield KL, Cook C, Ellis RJ, Bell-Sakyi L, Johnson N, Alberdi P, et al. Tick-borne pathogens induce differential expression of genes promoting cell survival and host resistance in Ixodes ricinus cells. Parasit Vectors. 2017;10:81. doi: 10.1186/s13071-017-2011-1. PubMed DOI PMC
Chalupova J, Raus M, Sedlarova M, Sebela M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv. 2014;32:230–241. doi: 10.1016/j.biotechadv.2013.11.002. PubMed DOI
Yssouf A, Flaudrops C, Drali R, Kernif T, Socolovschi C, Berenger JM, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification of tick vectors. J Clin Microbiol. 2013;51:522–528. doi: 10.1128/JCM.02665-12. PubMed DOI PMC
Karger A, Kampen H, Bettin B, Dautel H, Ziller M, Hoffmann B, et al. Species determination and characterization of developmental stages of ticks by whole-animal matrix-assisted laser desorption/ionization mass spectrometry. Ticks Tick Borne Dis. 2012;3:78–89. doi: 10.1016/j.ttbdis.2011.11.002. PubMed DOI
Yssouf A, Almeras L, Terras J, Socolovschi C, Raoult D, Parola P. Detection of Rickettsia spp in ticks by MALDI-TOF MS. PLoS Negl Trop Dis. 2015;9:e0003473. doi: 10.1371/journal.pntd.0003473. PubMed DOI PMC
Yssouf A, Almeras L, Raoult D, Parola P. Emerging tools for identification of arthropod vectors. Future Microbiol. 2016;11:549–566. doi: 10.2217/fmb.16.5. PubMed DOI
Chalupová J, Sedlářová M, Helmel M, Řehulka P, Marchetti-Deschmann M, Allmaier G, et al. MALDI-based intact spore mass spectrometry of downy and powdery mildews. J Mass Spectrom. 2012;47:978–986. doi: 10.1002/jms.3046. PubMed DOI
Beinhauer J, Lenobel R, Loginov D, Chamrád I, Řehulka P, Sedlářová M, et al. Identification of Bremia lactucae and Oidium neolycopersici proteins extracted for intact spore MALDI mass spectrometric biotyping. Electrophoresis. 2016;37:2940–2952. doi: 10.1002/elps.201600144. PubMed DOI
Simser JA, Palmer AT, Fingerle V, Kurtti TJ, Munderloh UG, Wilske B. Rickettsia monacensis sp. nov., a spotted fever group Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl Environ Microbiol. 2002;68:4559–4566. doi: 10.1128/AEM.68.9.4559-4566.2002. PubMed DOI PMC
Kurtti TJ, Munderloh UG, Andreadis TG, Magnarelli LA, Mather TN. Tick cell culture isolation of an intracellular prokaryote from the tick Ixodes scapularis. J Invertebr Pathol. 1996;67:318–321. doi: 10.1006/jipa.1996.0050. PubMed DOI
Munderloh UG, Liu Y, Wang M, Chen C, Kurtti TJ. Establishment, maintenance and description of cell lines from the tick Ixodes scapularis. J Parasitol. 1994;80:533–543. doi: 10.2307/3283188. PubMed DOI
Bell-Sakyi L. Ehrlichia ruminantium grows in cell lines from four ixodid tick genera. J Comp Pathol. 2004;130:285–293. doi: 10.1016/j.jcpa.2003.12.002. PubMed DOI
Schägger H. Tricine-SDS-PAGE. Nat Protoc. 2006;1:16–22. doi: 10.1038/nprot.2006.4. PubMed DOI
Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, et al. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–1333. doi: 10.1002/elps.200305844. PubMed DOI
Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc. 2006;1:2856–2860. doi: 10.1038/nprot.2006.468. PubMed DOI
Rehulka P, Zahradnikova M, Rehulkova H, Dvorakova P, Nenutil R, Valik D, et al. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J Sep Sci. 2018;41:1973–1982. doi: 10.1002/jssc.201701339. PubMed DOI
Wessel D, Flügge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem. 1984;138:141–143. doi: 10.1016/0003-2697(84)90782-6. PubMed DOI
Wang D, Kalb SR, Cotter RJ. Improved procedures for N-terminal sulfonation of peptides for matrix-assisted laser desorption/ionization post-source decay peptide sequencing. Rapid Commun Mass Spectrom. 2004;18:96–102. doi: 10.1002/rcm.1289. PubMed DOI
Beardsley RL, Reilly JP. Optimization of guanidination procedures for MALDI mass mapping. Anal Chem. 2002;74:1884–1890. doi: 10.1021/ac015613o. PubMed DOI
Rappsilber J, Mann M, Ishihama Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007;2:1896–1906. doi: 10.1038/nprot.2007.261. PubMed DOI