Revised Model of Abrasive Water Jet Cutting for Industrial Use
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34300951
PubMed Central
PMC8303882
DOI
10.3390/ma14144032
PII: ma14144032
Knihovny.cz E-zdroje
- Klíčová slova
- abrasive water jet, cutting, industrial application, modelling, process control,
- Publikační typ
- časopisecké články MeSH
Research performed by the author in the last decade led him to a revision of his older analytical models used for a description and evaluation of abrasive water jet (AWJ) cutting. The review has shown that the power of 1.5 selected for the traverse speed thirty years ago was influenced by the precision of measuring devices. Therefore, the correlation of results calculated from a theoretical model with the results of experiments performed then led to an increasing of the traverse speed exponent above the value derived from the theoretical base. Contemporary measurements, with more precise devices, show that the power suitable for the traverse speed is essentially the same as the value derived in the theoretical description, i.e., it is equal to "one". Simultaneously, the replacement of the diameter of the water nozzle (orifice) by the focusing (abrasive) tube diameter in the respective equations has been discussed, because this factor is very important for the AWJ machining. Some applications of the revised model are presented and discussed, particularly the reduced forms for a quick recalculation of the changed conditions. The correlation seems to be very good for the results calculated from the present model and those determined from experiments. The improved model shows potential to be a significant tool for preparation of the control software with higher precision in determination of results and higher calculation speed.
Zobrazit více v PubMed
Crow S.C. A Theory of Hydraulic Rock Cutting. Int. J. Rock Mech. Min. 1973;10:567–584. doi: 10.1016/0148-9062(73)90006-5. DOI
Rehbinder G. A Theory about Cutting Rock with Water Jet. Rock Mech. 1980;12:247–257. doi: 10.1007/BF01251028. DOI
Hashish M. A modeling study of metal-cutting with abrasive waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI
Hashish M. A model for abrasive—Waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI
Hlaváč L. Physical description of high energy liquid jet interaction with material. In: Rakowski Z., editor. Proceedings of the International Conference Geomechanics; Hradec/Ostrava, Czechoslovakia. 24–26 September 1991; Rotterdam, The Netherlands: Balkema; 1992. pp. 341–346.
Zeng J., Kim T.J. An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear. 1996;193:207–217. doi: 10.1016/0043-1648(95)06721-3. DOI
Kovacevic R., Yong Z. Modelling of 3D abrasive waterjet machining: Part 1—Theoretical basis. In: Gee C., editor. Proceedings of the 13th International Conference on Jetting Technology; Cagliari, Sardinia, Italy. 29–31 October 1996; Bury St Edmunds, UK: Mechanical Engineering Publishing Ltd.; 1996. pp. 73–82.
Yong Z., Kovacevic R. Modelling of 3D abrasive waterjet machining: Part 2—Simulation of machining. In: Gee C., editor. Proceedings of the 13th International Conference on Jetting Technology; Cagliari, Sardinia, Italy. 29–31 October 1996; Bury St Edmunds, UK: Mechanical Engineering Publishing Ltd.; 1996. pp. 83–89.
Hlaváč L.M. JETCUT—Software for prediction of high—Energy waterjet efficiency. In: Louis H., editor. Proceedings of the 14th International Conference on Jetting Technology, Brugge, Belgium, 21–23 September 1998. Professional Engineering Publishing Ltd.; London, UK: 1998. pp. 25–37.
Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical and Experimental Modeling of Abrasive Water Jet Cutting of Ductile Materials. J. Mater. Process. Technol. 1998;73:189–199. doi: 10.1016/S0924-0136(97)00228-8. DOI
Paul S., Hoogstrate A.M., van Luttervelt C.A., Kals H.J.J. Analytical Modeling of the Total Depth of Cut in Abrasive Water Jet Machining of Polycrystalline Brittle Materials. J. Mater. Process. Technol. 1998;73:206–212. doi: 10.1016/S0924-0136(97)00230-6. DOI
Deam R.T., Lemma E., Ahmed D.H. Modelling of the abrasive water jet cutting process. Wear. 2004;257:877–891. doi: 10.1016/j.wear.2004.04.002. DOI
Ma C., Deam R.T. A correlation for predicting the kerf profile from abrasive water jet cutting. Exp. Therm. Fluid Sci. 2006;30:337–343. doi: 10.1016/j.expthermflusci.2005.08.003. DOI
Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI
Chen F.L., Wang J., Lemma E., Siores E. Striation formation mechanisms on the jet cutting surface. J. Mater. Process. Technol. 2003;141:213–218. doi: 10.1016/S0924-0136(02)01120-2. DOI
Orbanic H., Junkar M. Analysis of striation formation mechanism in abrasive water jet cutting. Wear. 2008;265:821–830. doi: 10.1016/j.wear.2008.01.018. DOI
Zhang S.J., Wu Y.Q., Wang S. An exploration of an abrasive water jet cutting front profile. Int. J. Adv. Manuf. Technol. 2015;80:1685–1688. doi: 10.1007/s00170-015-7154-7. DOI
Shanmugam D.K., Wang J., Liu H. Minimisation of kerf tapers in abrasive waterjet machining of alumina ceramics using a compensation technique. Int. J. Mach. Tools Manuf. 2008;48:1527–1534. doi: 10.1016/j.ijmachtools.2008.07.001. DOI
Hlaváč L.M., Hlaváčová I.M., Geryk V., Plančár Š. Investigation of the taper of kerfs cut in steels by AWJ. Int. J. Adv. Manuf. Technol. 2015;77:1811–1818. doi: 10.1007/s00170-014-6578-9. DOI
Wu Y.Q., Zhang S.J., Wang S., Yang F.L., Tao H. Method of obtaining accurate jet lag information in abrasive water-jet machining process. Int. J. Adv. Manuf. Technol. 2015;76:1827–1835. doi: 10.1007/s00170-014-6404-4. DOI
Srinivasu D.S., Axinte D.A., Shipway P.H., Folkes J. Influence of kinematic operating parameters on kerf geometry in abrasive waterjet machining of silicon carbide ceramics. Int. J. Mach. Tools Manuf. 2009;49:1077–1088. doi: 10.1016/j.ijmachtools.2009.07.007. DOI
Alberdi A., Rivero A., de Lacalle L.N.L., Etxeberria I., Suarez A. Effect of process parameter on the kerf geometry in abrasive water jet milling. Int. J. Adv. Manuf. Technol. 2010;51:467–480. doi: 10.1007/s00170-010-2662-y. DOI
Hashish M. Precision cutting of thick materials with AWJ. In: Gee C., editor. Proceedings of the 17th International Conference on Water Jetting; Mainz, Germany. 7–9 September 2004; Cranfield, UK: BHR Group; 2004. pp. 33–45.
Hashish M. AWJ Milling of Gamma Titanium Aluminide. J. Manuf. Sci. Eng. 2010;132:041005. doi: 10.1115/1.4001663. DOI
Boud F., Carpenter C., Folkes J., Shipway P.H. Abrasive water jet cutting of a titanium alloy: The influence of abrasive morphology and mechanical properties on workpiece grit embedment and cut quality. J. Mater. Process. Technol. 2010;210:2197–2205. doi: 10.1016/j.jmatprotec.2010.08.006. DOI
Matsumura T., Muramatsu T., Fueki S., Hoshi T. Abrasive water jet machining of glass with stagnation effect. CIRP Ann. 2011;60:355–358. doi: 10.1016/j.cirp.2011.03.118. DOI
Srinivas S., Babu N.R. Penetration ability of abrasive waterjets in cutting of aluminum–silicon carbide particulate metal matrix composites. Mach. Sci. Technol. 2012;16:337–354. doi: 10.1080/10910344.2012.698935. DOI
Akkurt A. Cut Front Geometry Characterization in Cutting Applications of Brass with Abrasive Water Jet. J. Mater. Eng. Perform. 2010;19:599–606. doi: 10.1007/s11665-009-9513-8. DOI
Chen M., Zhang S., Zeng J., Chen B., Xue J., Ji L. Correcting shape error on external corners caused by the jet cut-in/cut-out process in abrasive water jet cutting. Int. J. Adv. Manuf. Technol. 2019;103:849–859. doi: 10.1007/s00170-019-03564-x. DOI
Schwartzentruber J., Spelt J.K., Papini M. Prediction of surface roughness in abrasive waterjet trimming of fiber reinforced polymer composites. Int. J. Mach. Tools Manuf. 2017;122:1–17. doi: 10.1016/j.ijmachtools.2017.05.007. DOI
Pahuja R., Ramulu M., Hashish M. Surface quality and kerf width prediction in abrasive water jet machining of metal-composite stacks. Compos. Part B Eng. 2019;175:107134. doi: 10.1016/j.compositesb.2019.107134. DOI
Anwar S., Axinte D.A., Becker A.A. Finite element modelling of overlapping abrasive water jet milled footprints. Wear. 2013;303:426–436. doi: 10.1016/j.wear.2013.03.018. DOI
Wang R.J., Wang C.Y., Zheng L.J., Song Y.X. Numerical simulation on the jet characteristics of abrasive jet. In: Zhu R., He N., Fu Y., Yang C.Y., editors. Advances in Materials Manufacturing Science and Technology XV, Special Edition Materials Science Forum. Volume 770. Trans Tech Publications Ltd.; Zurich-Uetikon, Switzerland: 2014. pp. 257–262.
Wang J.M., Gao N., Gong W.J. Abrasive waterjet machining simulation by SPH method. Int. J. Adv. Manuf. Technol. 2010;50:227–234.
Deepak D., Anjaiah D., Karanth K.V., Sharma N.Y. CFD Simulation of Flow in an Abrasive Water Suspension Jet: The Effect of Inlet Operating Pressure and Volume Fraction on Skin Friction and Exit Kinetic Energy. Adv. Mech. Eng. 2012:186430. doi: 10.1155/2012/186430. DOI
Hlaváč L.M., Hlaváčová I.M., Jandačka P., Zegzulka J., Viliamsová J., Vašek J., Mádr V. Comminution of material particles by water jets—influence of the inner shape of the mixing chamber. Int. J. Miner. Process. 2010;95:25–29. doi: 10.1016/j.minpro.2010.03.003. DOI
Hlaváčová I.M., Geryk V. Abrasives for water-jet cutting of high-strength and thick hard materials. Int. J. Adv. Manuf. Technol. 2017;90:1217–1224. doi: 10.1007/s00170-016-9462-y. DOI
Aydin G. Recycling of abrasives in abrasive water jet cutting with different types of granite. Arab. J. Geosci. 2014;7:4425–4435. doi: 10.1007/s12517-013-1113-0. DOI
Aydin G. Performance of recycling abrasives in rock cutting by abrasive water jet. J. Cent. South. Univ. 2015;22:1055–1061. doi: 10.1007/s11771-015-2616-5. DOI
Jerman M., Orbanic H., Junkar M., Lebar A. Thermal aspects of ice abrasive water jet technology. Adv. Mech. Eng. 2015:1687814015597619. doi: 10.1177/1687814015597619. DOI
Borkowski P.J. Application of abrasive-water jet technology for material sculpturing. Trans. Can. Soc. Mech. Eng. 2010;34:389–400. doi: 10.1139/tcsme-2010-0023. DOI
Schwartzentruber J., Papini M. Abrasive water jet micro-piercing of borosilicate glass. J. Mater. Process. Technol. 2015;219:143–154. doi: 10.1016/j.jmatprotec.2014.12.006. DOI
Haghbin N., Spelt J.K., Papini M. Abrasive water jet micro-machining of channels in metals: Model to predict high aspect-ratio channel profiles for submerged and unsubmerged machining. J. Mater. Process. Technol. 2015;222:399–409. doi: 10.1016/j.jmatprotec.2015.03.026. DOI
Babu M.N., Muthukrishnan N. Investigation of multiple process parameters in abrasive water jet machining of tiles. J. Chin. Inst. Eng. 2015;38:692–700. doi: 10.1080/02533839.2015.1010944. DOI
Kvietkova M., Barcik S., Bomba J., Alac P. Impact of chosen parameters on surface undulation during the cutting of agglomerated materials with an abrasive water jet. Drewno. 2014;57:111–123.
Servátka M., Fabian S. Experimental research and analysis of selected technological parameters on the roughness of steel area surface HARDOX 500 with thickness 40 mm cut by AWJ technology. Appl. Mech. Mater. 2013;308:13–18. doi: 10.4028/www.scientific.net/AMM.308.13. DOI
Caydas U., Hascalik A. A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 2008;202:574–582. doi: 10.1016/j.jmatprotec.2007.10.024. DOI
Singh R., Singh V., Gupta T.V.K. An experimental study on surface roughness in slicing tungsten carbide with abrasive water jet machining. In: Kalamkar V.R., Monkova K., editors. Proceedings of the International Conference on Advances in Mechanical Engineering, ICAME 2020; Nagpur, India. 10–11 January 2020; Singapore: Springer; 2021. pp. 353–359.
Jankovic P., Radovanovic M., Baralic J., Nedic B. Prediction model of surface roughness in abrasive water jet cutting of aluminium alloy. J. Balk. Tribol. Assoc. 2013;19:585–595.
Hreha P., Radvanska A., Knapcikova L., Królczyk G.M., Legutko S., Królczyk J.B., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI
Hlaváčová I.M., Mulicka I. High-energy liquid jet technology—Risk assessment in practice. Int. J. Occup. Med. Env. 2012;25:365–374. doi: 10.2478/s13382-012-0053-3. PubMed DOI
Fabian S., Salokyová Š. AWJ cutting: The technological head vibrations with different abrasive mass flow rates. Appl. Mech. Mater. 2013;308:1–6. doi: 10.4028/www.scientific.net/AMM.308.1. DOI
Narayanan C., Balz R., Weiss D.A., Heiniger K.C. Modelling of abrasive particle energy in water jet machining. J. Mater. Process. Technol. 2013;213:2201–2210. doi: 10.1016/j.jmatprotec.2013.06.020. DOI
Strnadel B., Hlaváč L.M., Gembalová L. Effect of steel structure on the declination angle in AWJ cutting. Int. J. Mach. Tools Manuf. 2013;64:12–19. doi: 10.1016/j.ijmachtools.2012.07.015. DOI
Hlaváč L.M., Strnadel B., Kaličinský J., Gembalová L. The model of product distortion in AWJ cutting. Int. J. Adv. Manuf. Technol. 2012;62:157–166. doi: 10.1007/s00170-011-3788-2. DOI
Ahmed D.H., Naser J., Deam R.T. Particles impact characteristics on cutting surface during the abrasive water jet machining: Numerical study. J. Mater. Process. Technol. 2016;232:116–130. doi: 10.1016/j.jmatprotec.2016.01.032. DOI
Lari M.R.S., Papini M. Inverse methods to gradient etch three-dimensional features with prescribed topographies using abrasive jet micro-machining: Part I—Modeling. Precis. Eng. 2016;45:272–284. doi: 10.1016/j.precisioneng.2016.03.004. DOI
Hlaváč L.M. Application of water jet description on the de-scaling process. Int. J. Adv. Manuf. Technol. 2015;80:721–735. doi: 10.1007/s00170-015-7020-7. DOI
Hlaváč L.M., Hlaváčová I.M., Vašek J., Jandačka P., Zegzulka J., Viliamsová J., Mádr V., Uhlář R. Investigation Of Samples From the High-Velocity Water Jet Driven Micro/Nano Particle Collider. Am. Soc. Mech. Eng. Press. Vessel. Pip. Div. 2010;5:119–126.
Galecki G., Sen S., Akar G., Li Y.Q. Parametric Evaluation of Coal Comminution by Waterjets. Int. J. Coal Prep. Util. 2013;33:36–46. doi: 10.1080/19392699.2012.756812. DOI
Hashish M. Experimental studies of cutting with abrasive waterjets. In: Summers D.A., Haston F.F., editors. Proceedings of the 2nd U.S. Water Jet Conference; Rolla, Missouri. 24–26 May 1983; St. Louis, MO, USA: WJTA; 1983. pp. 379–389.
Hlaváč L.M., Krajcarz D., Hlaváčová I.M., Spadło S. Precision comparison of analytical and statistical-regression models for AWJ cutting. Precis. Eng. 2017;50:148–159. doi: 10.1016/j.precisioneng.2017.05.002. DOI
Hlaváč L.M., Hlaváčová I.M., Arleo F., Viganò F., Annoni M.P.G., Geryk V. Shape distortion reduction method for abrasive water jet (AWJ) cutting. Precis. Eng. 2018;53:194–202. doi: 10.1016/j.precisioneng.2018.04.003. DOI
Hlaváč L.M., Hlaváčová I.M., Plančár Š., Krenický T., Geryk V. Deformation of products cut on AWJ x-y tables and its suppression; Proceedings of the International Conference on Mechanical Engineering and Applied Composite Materials, MEACM 2017; Hong Kong, China. 23–24 November 2017; Beijing, China: IOP Publishing; 2018. p. 0120152017. IOP Conference Series: Materials Science and Engineering.
Hlaváč L.M., Hlaváčová I.M., Vašek J. TRANSACTIONS of the VSB—Technical University of Ostrava. Volume LIII. VSB–Technical University of Ostrava; Ostrava, Czech Republic: 2007. Milling of materials by water jets—Acting of liquid jet in the cutting head; pp. 73–84. (Engineering Series).
Impact of Preparation of Titanium Alloys on Their Abrasive Water Jet Machining
Notes on the Abrasive Water Jet (AWJ) Machining