Analyses of Vibration Signals Generated in W. Nr. 1.0038 Steel during Abrasive Water Jet Cutting Aimed to Process Control

. 2022 Jan 04 ; 15 (1) : . [epub] 20220104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009491

Grantová podpora
SP2021/64 Ministry of Education, Youth and Sports of the Czech Republic

The presented research was aimed at finding a suitable tool and procedure for monitoring undercuts or other problems such as cutting without abrasive or inappropriate parameters of the jet during the abrasive water jet (AWJ) cutting of hard-machined materials. Plates of structural steel RSt 37-2 of different thickness were cut through by AWJ with such traverse speeds that cuts of various qualities were obtained. Vibrations of the workpiece were monitored by three accelerometers mounted on the workpiece by a special block that was designed for this purpose. After detecting and recording vibration signals through the National Instruments (NI) program Signal Express, we processed this data by means of the LabVIEW Sound and Vibration Toolkit. Statistical evaluation of data was performed, and RMS was identified as the parameter most suitable for online vibration monitoring. We focus on the analysis of the relationship between the RMS and traverse speed.

Zobrazit více v PubMed

[(accessed on 30 July 2021)]. Available online: https://flowwaterjetblog.com/2015/02/03/how-one-small-change-made-waterjet-what-it-is-today/

Liu X.C., Liang Z.W., Wen G.L., Yuan X.F. Waterjet machining and research developments: A review. Int. J. Adv. Manuf. Technol. 2019;102:1257–1335. doi: 10.1007/s00170-018-3094-3. DOI

Arola D., Fadale T., Ramulu M. Heat Flux at the Erosion Boundary During Abrasive Waterjet Machining of Metals; Proceedings of the 13th Symposium on Jetting Technology; Sardinia, Italy. 29–31 October 1996; Suffolk, UK: Mechanical Engineering Publ.; 1996. pp. 735–752.

Arola D., Ramulu M. A residual stress analysis of metals machined with abrasive waterjet; Proceedings of the 13th Symposium on Jetting Technology; Sardinia, Italy. 29–31 October 1996; Suffolk, UK: Mechanical Engineering Publ.; 1996. pp. 269–290.

Kovacevic R., Hashish M., Mohan R., Ramulu M., Kim T.J., Geskin S. State of the art of research and development in abrasive waterjet machining. J. Manuf. Sci. Eng. 1997;119:776–785. doi: 10.1115/1.2836824. DOI

Hashish M. Waterjets for aeroengine applications; Proceedings of the 24th International Conference on Water Jetting; Manchester, UK. 5–7 September 2018; Bedford, UK: BHR Group Limited; 2018. pp. 207–217.

Jurisevic B., Brissaud D., Junkar M. Monitoring of abrasive water jet (AWJ) cutting using sound detection. Int. J. Adv. Manuf. Technol. 2004;24:733–737. doi: 10.1007/s00170-003-1752-5. DOI

Axinte D.A., Kong M.C. An integrated monitoring method to supervise waterjet machining. CIRP Ann. 2009;58:303–306. doi: 10.1016/j.cirp.2009.03.022. DOI

Krenický T., Rimár M. Monitoring of vibrations in the technology of AWJ. Key Eng. Mater. 2011;496:229–234. doi: 10.4028/www.scientific.net/KEM.496.229. DOI

Hreha P., Radvanská A., Knapčiková L., Królczyk G., Legutko S., Królczyk J., Hloch S., Monka P. Roughness parameters calculation by means of on-line vibration monitoring emerging from AWJ interaction with material. Metrol. Meas. Syst. 2015;22:315–326. doi: 10.1515/mms-2015-0024. DOI

Sutowski P., Sutowska M., Kapłonek W. The use of high-frequency acoustic emission analysis for in-process assessment of the surface quality of aluminium alloy 5251 in abrasive waterjet machining. Proc. IMechE Part B J. Eng. Manuf. 2018;232:2547–2565. doi: 10.1177/0954405417703428. DOI

Mikler J. On use of acoustic emission in monitoring of under and over abrasion during a water jet milling process. J. Mach. Eng. 2014;142:104–115.

Pahuja R., Ramulu M. Surface quality monitoring in abrasive water jet machining of Ti6Al4V–CFRP stacks through wavelet packet analysis of acoustic emission signals. Int. J. Adv. Manuf. Technol. 2019;104:4091–4104. doi: 10.1007/s00170-019-04177-0. DOI

Copertaro E., Perotti F., Castellini P., Chiariotti P., Martarelli M., Annoni M. Focusing tube operational vibration as a means for monitoring the abrasive waterjet cutting capability. J. Manuf. Process. 2020;59:1–10. doi: 10.1016/j.jmapro.2020.09.040. DOI

Hase A., Mishina H., Wada M. Correlation between features of acoustic emission signals and mechanical wear mechanisms. Wear. 2012;292–293:144–150. doi: 10.1016/j.wear.2012.05.019. DOI

Pahuja M., Ramulu M. Abrasive waterjet process monitoring through acoustic and vibration signals; Proceedings of the 24th International Conference on Water Jetting 2018; Manchester, UK. 5–7 September 2018; Bedford, UK: BHR Group Limited; 2018. pp. 75–87.

Ukpai J.I., Barker R., Hu X., Neville A. Exploring the erosive wear of X65 carbon steel by acoustic emission method. Wear. 2013;301:370–380. doi: 10.1016/j.wear.2012.11.036. DOI

Teti R., Jemielniak K., O’Donnell G., Dornfeld D. Advanced monitoring of machining operations. CIRP Ann.-Manuf. Technol. 2010;59:717–739. doi: 10.1016/j.cirp.2010.05.010. DOI

Kuntoğlu M., Salur E., Gupta M.K., Sarıkaya M., Pimenov D.J. A state-of-the-art review on sensors and signal processing systems in mechanical machining processes. Int. J. Adv. Manuf. Technol. 2021;116:2711–2735. doi: 10.1007/s00170-021-07425-4. DOI

Bointon P., Todhunter L., Clare A., Leach R. Performance Verification of a Flexible Vibration Monitoring System. Machines. 2020;8:3. doi: 10.3390/machines8010003. DOI

Ambhore N., Kamble D., Chincanikar S., Wayal V. Tool condition monitoring system: A Review. Mater. Today Proc. 2015;2:3419–3428. doi: 10.1016/j.matpr.2015.07.317. DOI

Ratava J., Lohtander M., Varis J. Tool condition monitoring in interrupted cutting with acceleration sensors. Robot. Comput.–Integr. Manuf. 2017;47:70–75. doi: 10.1016/j.rcim.2016.11.008. DOI

Hloch S., Ruggiero A. Online Monitoring and Analysis of Hydroabrasive Cutting by Vibration. Adv. Mech. Eng. 2013;5:894561. doi: 10.1155/2013/894561. DOI

Copertaro E., Perotti F., Annoni M. Operational vibration of a waterjet focuser as means for monitoring its wear progression. Int. J. Adv. Manuf. Technol. 2021;59:1937–1949. doi: 10.1007/s00170-021-07534-0. DOI

Figlus T., Szafraniec P., Skrúcaný T. Methods of Measuring and Processing Signals during Tests of the Exposure of a Motorcycle Driver to Vibration and Noise. Int. J. Environ. Res. Public Health. 2019;16:3145. doi: 10.3390/ijerph16173145. PubMed DOI PMC

Postel M., Aslan D., Wegener K., Altintas Y. Monitoring of vibrations and cutting forces with spindle mounted vibration sensors. CIRP Ann.-Manuf. Technol. 2019;68:414–416. doi: 10.1016/j.cirp.2019.03.019. DOI

Górka J., Kotarska A. The quality of water jet cutting of selected construction materials. IOP Conf. Ser. Mater. Sci. Eng. 2018;400:022031. doi: 10.1088/1757-899X/400/2/022031. DOI

Hlaváč L.M. Revised Model of Abrasive Water Jet Cutting for Industrial Use. Materials. 2021;14:4032. doi: 10.3390/ma14144032. PubMed DOI PMC

Tyč M., Hlaváčová I.M., Kozelský J. Monitoring of Abrasive Waterjet Cutting and Drilling. In: Klichová D., Sitek L., Hloch S., Valentinčič J., editors. Lecture Notes in Mechanical Engineering, Proceedings of the Advances in Water Jetting-Water Jet 2019, Čeladná, Czech Republic, 20–22 November 2019. Springer Nature; Cham, Switzerland: 2021. pp. 242–251.

Anderson T.W., Darling D.A. A Test of Goodness-of-Fit. J. Am. Stat. Assoc. 1954;49:765–769. doi: 10.1080/01621459.1954.10501232. DOI

[(accessed on 31 July 2021)]; Available online: https://www.itl.nist.gov/div898/handbook/eda/section3/eda357.htm.

Spurrier J.D. On the null distribution of the Kruskal–Wallis statistic. J. Nonparametr. Stat. 2003;15:685–691. doi: 10.1080/10485250310001634719. DOI

Abdi H., Williams L.J. Tukey’s Honestly Significant Difference (HSD) Test. In: Salkind N., editor. Encyclopedia of Research Design. Volume 3. Sage; Thousand Oaks, CA, USA: 2010. pp. 1–5.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...