Biallelic antigen escape is a mechanism of resistance to anti-CD38 antibodies in multiple myeloma
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
K12 CA226330
NCI NIH HHS - United States
P30 CA008748
NCI NIH HHS - United States
P30 CA240139
NCI NIH HHS - United States
U01 CA271410
NCI NIH HHS - United States
PubMed
40493883
PubMed Central
PMC12451653
DOI
10.1182/blood.2024028107
PII: 537722
Knihovny.cz E-zdroje
- MeSH
- alely MeSH
- antigeny CD38 * genetika imunologie antagonisté a inhibitory MeSH
- chemorezistence * genetika MeSH
- humanizované monoklonální protilátky MeSH
- lidé MeSH
- membránové glykoproteiny * genetika imunologie MeSH
- mnohočetný myelom * genetika imunologie farmakoterapie patologie MeSH
- monoklonální protilátky * terapeutické užití farmakologie MeSH
- únik nádoru z imunitní kontroly * genetika MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny CD38 * MeSH
- CD38 protein, human MeSH Prohlížeč
- daratumumab MeSH Prohlížeč
- humanizované monoklonální protilátky MeSH
- isatuximab MeSH Prohlížeč
- membránové glykoproteiny * MeSH
- monoklonální protilátky * MeSH
Monoclonal antibodies targeting CD38 are a therapeutic mainstay in multiple myeloma (MM). Although they have contributed to improved outcomes, most patients still experience disease relapse, and little is known about tumor-intrinsic mechanisms of resistance to these drugs. Antigen escape has been implicated as a mechanism of tumor-cell evasion in immunotherapy. Yet, it is unknown whether MM cells can develop permanent resistance to anti-CD38 antibodies by acquiring genomic events leading to biallelic disruption of the CD38 gene locus. Here, we analyzed whole-genome and whole-exome sequencing data from patients 701 newly diagnosed MM, 67 patients at relapse with naivety to anti-CD38 antibodies, and 50 patients collected at relapse after anti-CD38 antibodies. We report a loss of CD38 in 10 of 50 patients (20%) after CD38 therapy, 3 of whom exhibited a loss of both copies. Two of these cases showed convergent evolution in which distinct subclones independently acquired similar advantageous variants. Functional studies on missense mutations involved in biallelic CD38 events revealed that 2 variants, L153H and C275Y, decreased binding affinity and antibody-dependent cellular cytotoxicity of the commercial antibodies daratumumab and isatuximab. However, a third mutation, R140G, conferred selective resistance to daratumumab, while retaining sensitivity to isatuximab. Clinically, patients with MM are often rechallenged with CD38 antibodies after disease progression and these data suggest that next-generation sequencing may play a role in subsequent treatment selection for a subset of patients.
Department of eBiology Large Molecule Research Sanofi R and D Vitry sur Seine France
Department of Laboratory Medicine and Pathology Mayo Clinic Rochester MN
Department of Medicine Mayo Clinic Phoenix AZ
Department of Medicine Mayo Clinic Rochester MN
Department of Oncology Arnie Charbonneau Cancer Institute University of Calgary Calgary AB Canada
Division of Translational Medical Oncology German Cancer Consortium Heidelberg Germany
Division of Translational Medical Oncology German Cancer Research Center Heidelberg Germany
Myeloma Division Sylvester Comprehensive Cancer Center University of Miami Miami FL
Myeloma Service Department of Medicine Memorial Sloan Kettering Cancer Center New York NY
Zobrazit více v PubMed
Facon T, Dimopoulos M-A, Leleu XP, et al. Isatuximab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. New England Journal of Medicine. 2024;
Facon T, Kumar S, Plesner T, et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. New England Journal of Medicine. 2019;380(22):2104–2115. PubMed PMC
Leleu X, Hulin C, Lambert J, et al. Isatuximab, lenalidomide, dexamethasone and bortezomib in transplant-ineligible multiple myeloma: the randomized phase 3 BENEFIT trial. Nature Medicine. 2024:1–7.
Leypoldt LB, Tichy D, Besemer B, et al. Isatuximab, carfilzomib, lenalidomide, and dexamethasone for the treatment of high-risk newly diagnosed multiple myeloma. Journal of Clinical Oncology. 2024;42(1):26–37. PubMed PMC
Sonneveld P, Dimopoulos MA, Boccadoro M, et al. Daratumumab, bortezomib, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine. 2024;390(4):301–313. PubMed
Voorhees PM, Kaufman JL, Laubach J, et al. Daratumumab, lenalidomide, bortezomib, and dexamethasone for transplant-eligible newly diagnosed multiple myeloma: the GRIFFIN trial. Blood, The Journal of the American Society of Hematology. 2020;136(8):936–945.
Attal M, Richardson PG, Rajkumar SV, et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study. The Lancet. 2019;394(10214):2096–2107.
Dimopoulos MA, Oriol A, Nahi H, et al. Daratumumab, lenalidomide, and dexamethasone for multiple myeloma. New England Journal of Medicine. 2016;375(14):1319–1331. PubMed
Gandhi UH, Cornell RF, Lakshman A, et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia. 2019;33(9):2266–2275. PubMed PMC
Saltarella I, Desantis V, Melaccio A, et al. Mechanisms of resistance to anti-CD38 daratumumab in multiple myeloma. Cells. 2020;9(1):167. PubMed PMC
Van de Donk NW, Usmani SZ. CD38 antibodies in multiple myeloma: mechanisms of action and modes of resistance. Frontiers in immunology. 2018;9:2134. PubMed PMC
Ise M, Matsubayashi K, Tsujimura H, Kumagai K. Loss of CD38 expression in relapsed refractory multiple myeloma. Clinical Lymphoma Myeloma and Leukemia. 2016;16(5):e59–e64.
Minarik J, Novak M, Flodr P, et al. CD 38-negative relapse in multiple myeloma after daratumumab-based chemotherapy. European journal of haematology. 2017;99(2):186–189. PubMed
Mikhael J, Belhadj-Merzoug K, Hulin C, et al. A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab. Blood cancer journal. 2021;11(5):89. PubMed PMC
Perez de Acha O, Reiman L, Jayabalan DS, et al. CD38 antibody re-treatment in daratumumab-refractory multiple myeloma after time on other therapies. Blood Advances. 2023;7(21):6430–6440. PubMed PMC
Cohen YC, Zada M, Wang S-Y, et al. Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing. Nature medicine. 2021;27(3):491–503.
Maura F, Boyle EM, Coffey D, et al. Genomic and immune signatures predict clinical outcome in newly diagnosed multiple myeloma treated with immunotherapy regimens. Nature cancer. 2023;4(12):1660–1674. PubMed PMC
Ziccheddu B, Giannotta C, D’Agostino M, et al. Genomic and immune determinants of resistance to daratumumab-based therapy in relapsed refractory multiple myeloma. Blood Cancer Journal. 2024;14(1):117. PubMed PMC
Lee H, Ahn S, Maity R, et al. Mechanisms of antigen escape from BCMA-or GPRC5D-targeted immunotherapies in multiple myeloma. Nature Medicine. 2023:1–12.
Papadimitriou M, Ahn S, Diamond B, et al. Timing antigenic escape in multiple myeloma treated with T-cell redirecting immunotherapies. bioRxiv. 2024:2024.05. 22.595383.
Grab AL, Kim PS, John L, et al. Pre-Clinical Assessment of SAR442257, a CD38/CD3xCD28 Trispecific T Cell Engager in Treatment of Relapsed/Refractory Multiple Myeloma. Cells. 2024;13(10):879. PubMed PMC
Grandclément C, Estoppey C, Dheilly E, et al. Development of ISB 1442, a CD38 and CD47 bispecific biparatopic antibody innate cell modulator for the treatment of multiple myeloma. Nature Communications. 2024;15(1):2054.
Mei H, Li C, Jiang H, et al. A bispecific CAR-T cell therapy targeting BCMA and CD38 in relapsed or refractory multiple myeloma. Journal of Hematology & Oncology. 2021;14:1–17. PubMed PMC
Portuguese AJ, Fang M, Tuazon SA, et al. Acquired CD38 gene deletion as a mechanism of tumor antigen escape in multiple myeloma. Blood Advances. 2023;7(23):7235–7238. PubMed PMC
Skerget S, Penaherrera D, Chari A, et al. Comprehensive molecular profiling of multiple myeloma identifies refined copy number and expression subtypes. Nature Genetics. 2024:1–12. PubMed
Poos AM, Prokoph N, Przybilla MJ, et al. Resolving therapy resistance mechanisms in multiple myeloma by multiomics subclone analysis. Blood. 2023;142(19):1633–1646. PubMed PMC
Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28(18):i333–i339. PubMed PMC
Chen X, Schulz-Trieglaff O, Shaw R, et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics. 2016;32(8):1220–1222. PubMed
Wala JA, Bandopadhayay P, Greenwald NF, et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome research. 2018;28(4):581–591. PubMed PMC
Reisinger E, Genthner L, Kerssemakers J, et al. OTP: An automatized system for managing and processing NGS data. Journal of biotechnology. 2017;261:53–62. PubMed
Rimmer A, Phan H, Mathieson I, et al. Integrating mapping-, assembly-and haplotype-based approaches for calling variants in clinical sequencing applications. Nature genetics. 2014;46(8):912–918. PubMed PMC
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10(2):giab008. PubMed PMC
Tarabichi M, Salcedo A, Deshwar AG, et al. A practical guide to cancer subclonal reconstruction from DNA sequencing. Nature methods. 2021;18(2):144–155. PubMed PMC
Rustad EH, Yellapantula VD, Glodzik D, et al. Revealing the impact of structural variants in multiple myeloma. Blood cancer discovery. 2020;1(3):258. PubMed PMC
Nik-Zainal S, Van Loo P, Wedge DC, et al. The life history of 21 breast cancers. Cell. 2012;149(5):994–1007. PubMed PMC
Panakkal V, Lakshman A, Shi M, et al. Utility of flow cytometry screening before MRD testing in multiple myeloma. Blood cancer journal. 2023;13(1):55. PubMed PMC
Maura F, Rajanna AR, Ziccheddu B, et al. Genomic classification and individualized prognosis in multiple myeloma. Journal of Clinical Oncology. 2024;42(11):1229–1240. PubMed PMC
Maura F, Bolli N, Angelopoulos N, et al. Genomic landscape and chronological reconstruction of driver events in multiple myeloma. Nature communications. 2019;10(1):3835.
Landau HJ, Yellapantula V, Diamond BT, et al. Accelerated single cell seeding in relapsed multiple myeloma. Nature communications. 2020;11(1):3617.
Cirrincione AM, Poos AM, Ziccheddu B, et al. The biological and clinical impact of deletions before and after large chromosomal gains in multiple myeloma. Blood. 2024;144(7):771–783. PubMed PMC
Derrien J, Gastineau S, Frigout A, et al. Acquired resistance to a GPRC5D-directed T-cell engager in multiple myeloma is mediated by genetic or epigenetic target inactivation. Nature Cancer. 2023;4(11):1536–1543. PubMed
Truger MS, Duell J, Zhou X, et al. Single-and double-hit events in genes encoding immune targets before and after T cell–engaging antibody therapy in MM. Blood advances. 2021;5(19):3794–3798. PubMed PMC
Lee HT, Kim Y, Park UB, Jeong TJ, Lee SH, Heo Y-S. Crystal structure of CD38 in complex with daratumumab, a first-in-class anti-CD38 antibody drug for treating multiple myeloma. Biochemical and Biophysical Research Communications. 2021;536:26–31. PubMed
Martin TG, Corzo K, Chiron M, et al. Therapeutic opportunities with pharmacological inhibition of CD38 with isatuximab. Cells. 2019;8(12):1522. PubMed PMC
Badros AZ, Foster L, Anderson LD Jr, et al. Daratumumab with lenalidomide as maintenance after transplant in newly diagnosed multiple myeloma: the AURIGA study. Blood Journal. 2024:blood. 2024025746.