Impact of Preparation of Titanium Alloys on Their Abrasive Water Jet Machining

. 2021 Dec 16 ; 14 (24) : . [epub] 20211216

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34947362

Grantová podpora
SP2021/64 Ministry of Education Youth and Sports

Several titanium alloys, i.e., grade 2 Ti, Ti6Al4V and NiTi alloy, prepared by selected deformation procedures were subjected to abrasive water jet (AWJ) cutting and subsequently analysed. The study describes samples' preparations and respective material structures. The impact of deformation processing of the selected alloys on the declination angle during cutting, and the results of measurements of surface wall quality performed for the selected samples at the Department of Physics of Faculty of Electrical Engineering and Computer Science at VŠB-Technical University of Ostrava, are presented and discussed, as are also the influences of structural features of the processed titanium alloys on surface qualities of the investigated samples. The results showed that the highest resistance to AWJ machining exhibited the Ti6Al4V alloy prepared by forward extrusion. Its declination angle (recalculated to the thickness 10 mm to compare all the studied samples) was 12.33° at the traverse speed of 100 mm/min, pumping pressure of 380 MPa, and abrasive mass flow rate of 250 g/min.

Zobrazit více v PubMed

Russell K.L. Lee. Structure-Property Relations in Nonferrous Metals. 1st ed. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2005.

Lutjering G., Williams J.C. Titanium. Springer; Berlin, Germany: 2003.

Greger M., Kocich R., Kander L., Jonsta P. Nanostructured titanium for dental applications; Proceedings of the Metal 2010 19th International Conference on Metallurgy and Materials, Roznov pod Radhostem; Czech Republic. 18–20 May 2010; Ostrava, Czech Republic: Tanger Ltd; 2010. pp. 182–186.

Zach L., Kunčická L., Růžička P., Kocich R. Design analysis and verification of a knee joint oncological prosthesis finite element model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI

Rishi P., Ramulu M. Abrasive water jet machining of titanium (Ti6Al4V)–CFRP stacks—A semianalytical modeling approach in the prediction of kerf geometry. J. Manuf. Process. 2019;39:327–337.

Kunčická L., Kocich R., Lowe T.C. Advances in metals and alloys for joint replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI

Nocivin A., Raducanu D., Vasile B., Trisca-Rusu C., Cojocaru E., Dan A., Irimescu R., Cojocaru V. Tailoring a low young modulus for a beta titanium alloy by combining severe plastic deformation with solution treatment. Materials. 2021;14:3467. doi: 10.3390/ma14133467. PubMed DOI PMC

Ozaltin K., Chrominski W., Kulczyk M., Panigrahi A., Horky J., Zehetbauer M., Lewandowska M. Enhancement of mechanical properties of biocompatible Ti–45Nb alloy by hydrostatic extrusion. J. Mater. Sci. 2014;49:6930–6936. doi: 10.1007/s10853-014-8397-7. DOI

Wang Z., Chen J., Besnard C., Kunčická L., Kocich R., Korsunsky A.M. In situ neutron diffraction investigation of texture-dependent Shape Memory Effect in a near equiatomic NiTi alloy. Acta Mater. 2021;202:135–148. doi: 10.1016/j.actamat.2020.10.049. DOI

Greger M., Kocich R., Černý M., Kander L. Properties of comercial pure titanium after equal channel angular pressing; Proceedings of the Metal 2009 18th International Conference on Metallurgy and Materials, Hradec and Moravici; Czech Republic. 19–21 May 2009; Ostrava, Czech Republic: Tanger Ltd; 2009. pp. 516–520.

An B., Li Z., Diao X., Xin H., Zhang Q., Jia X., Wu Y., Li K., Guo Y. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP. Mater. Sci. Eng. C. 2016;67:34–41. doi: 10.1016/j.msec.2016.04.105. PubMed DOI

Zhao P.C., Yuan G.J., Wang R.Z., Guan B., Jia Y.F., Zhang X.C., Tu S.T. Grain-refining and strengthening mechanisms of bulk ultrafine grained CP-Ti processed by L-ECAP and MDF. J. Mater. Sci. Technol. 2021;83:196–207. doi: 10.1016/j.jmst.2021.01.019. DOI

Kocich R., Macháčková A., Andreyachshenko V.A. A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Comput. Mater. Sci. 2015;101:233–241. doi: 10.1016/j.commatsci.2015.02.003. DOI

Kunčická L., Kocich R., Drápala J. Andreyachshenko, V. FEM simulations and comparison of the ecap and ECAP-PBP influence on Ti6Al4V alloy’s deformation behaviour; Proceedings of the Metal 2013 22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17 May 2013; Ostrava, Czech Republic: Tanger Ltd; 2013. pp. 391–396.

Kocich R., Kursa M., Szurman I., Dlouhý A. The influence of imposed strain on the development of microstructure and transformation characteristics of Ni–Ti shape memory alloys. J. Alloys Compd. 2011;509:2716–2722. doi: 10.1016/j.jallcom.2010.12.003. DOI

Kocich R., Szurman I., Kursa M., Fiala J. Fiala. Investigation of influence of preparation and heat treatment on deformation behaviour of the alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI

Sheremetyev V., Churakova A., Derkach M., Gunderov D., Raab G., Prokoshkin S. Effect of ECAP and annealing on structure and mechanical properties of metastable beta Ti-18Zr-15Nb (at.%) alloy. Mater. Lett. 2021;305:130760. doi: 10.1016/j.matlet.2021.130760. DOI

Lin Z., Wang L., Xue X., Lu W., Qin J., Zhang D. Microstructure evolution and mechanical properties of a Ti–35Nb–3Zr–2Ta biomedical alloy processed by equal channel angular pressing (ECAP) Mater. Sci. Eng. C. 2013;33:4551–4561. doi: 10.1016/j.msec.2013.07.010. PubMed DOI

Gupta R.K., Kumar V.A., Gururaja U.V., Subramani K., Prakash U., Chakravarthi K.V.A., Ramkumar P., Sarkar P. Solution treatment and aging (STA) study of thick-wall ring from Titanium alloy Ti6Al4V. Met. Sci. Heat Treat. 2015;717:47.

Gupta R.K., Kumar V.A., Chhangani S. Study on variants of solution treatment and aging cycle of titanium alloy Ti6Al4V. J. Mater. Eng. Perform. 2016;25:1492–1501. doi: 10.1007/s11665-016-1993-8. DOI

Ezugwu E.O., Wang Z.M. Titanium alloys and their machinability—A review. J. Mater. Process. Technol. 1997;68:262–274. doi: 10.1016/S0924-0136(96)00030-1. DOI

Yuan Y., Chen J., Gao H., Wang X. An investigation into the abrasive waterjet milling circular pocket on titanium alloy. Int. J. Adv. Manuf. Technol. 2020;107:4503–4515. doi: 10.1007/s00170-020-05294-x. DOI

Hlaváč L.M., Gembalová L., Štěpán P., Hlaváčová I.M. Improvement of abrasive water jet machining accuracy for titanium and TiNb alloy. Int. J. Adv. Manuf. Technol. 2015;80:1733–1740. doi: 10.1007/s00170-015-7132-0. DOI

Shipway P.H., Fowler G., Pashby I.R. Characteristics of the surface of a titanium alloy following milling with abrasive waterjets. Wear. 2005;258:123–132. doi: 10.1016/j.wear.2004.04.005. DOI

Fowler G., Shipway P.H., Pashby I.R. A technical note on grit embedment following abrasive water-jet milling of a titanium alloy. J. Mater. Process. Technol. 2005;159:356–368. doi: 10.1016/j.jmatprotec.2004.05.024. DOI

Fowler G., Shipway P.H., Pashby I.R. Abrasive water-jet controlled depth milling of Ti6Al4V alloy—An investigation of the role of jet-workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J. Mater. Process. Technol. 2005;161:407–414. doi: 10.1016/j.jmatprotec.2004.07.069. DOI

Fowler G., Pashby I.R., Shipway P.H. The effect of particle hardness and shape when abrasive water jet milling of titanium alloy Ti6Al4V. Wear. 2009;266:613–620. doi: 10.1016/j.wear.2008.06.013. DOI

Arola D., McCain M.L., Kunaporn S., Ramulu M. Waterjet and abrasive waterjet surface treatment of titanium: A comparison of surface texture and residual stress. Wear. 2001;249:943–950. doi: 10.1016/S0043-1648(01)00826-2. DOI

Arola D., Alade A.E., Weber W. Improving fatigue strength of metals using abrasive waterjet peening. Mach. Sci. Technol. 2006;10:197–218. doi: 10.1080/10910340600710105. DOI

Hashish M. A modeling study of metal-cutting with abrasive waterjets. J. Eng. Mater. Technol. 1984;106:88–100. doi: 10.1115/1.3225682. DOI

Hashish M. A model for abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989;111:154–162. doi: 10.1115/1.3226448. DOI

Bitter J.G.A. A study of erosion phenomena part 1. Wear. 1963;6:5–21. doi: 10.1016/0043-1648(63)90003-6. DOI

Bitter J.G.A. A study of erosion phenomena part 2. Wear. 1963;6:169–190. doi: 10.1016/0043-1648(63)90073-5. DOI

Sheldon G.L., Finnie I. On the ductile behavior of nominally brittle materials during erosive cutting. ASME J. Eng. Ind. 1966;88:387–392. doi: 10.1115/1.3672666. DOI

Sheldon G.L., Finnie I. The mechanism of material removal in the erosive cutting of brittle materials. ASME J. Eng. Ind. 1966;88:393–399. doi: 10.1115/1.3672667. DOI

Hlaváč L., Hlaváčová I., Gembalová L., Kaličinský J., Fabián S., Měšťánek J., Kmec J., Mádr V. Experimental method for the investigation of the abrasive water jet cutting quality. J. Mater. Process. Technol. 2009;209:6190–6195. doi: 10.1016/j.jmatprotec.2009.04.011. DOI

Singh R., Singh V., Gupta T.V.K. An experimental study on surface roughness in slicing tungsten carbide with abrasive water jet machining. In: Kalamkar V.R., Monkova K., editors. Proceedings of the International Conference on Advances in Mechanical Engineering, ICAME 2020; Nagpur, India. 10–11 January 2020; Singapore: Springer; 2021. pp. 353–359.

Hlaváč L.M. Investigation of the abrasive water jet trajectory curvature inside the kerf. J. Mater. Process. Technol. 2009;209:4154–4161. doi: 10.1016/j.jmatprotec.2008.10.009. DOI

Hlaváč L. Revised model of abrasive water jet cutting for industrial use. Materials. 2021;10:4032. doi: 10.3390/ma14144032. PubMed DOI PMC

Gupta V., Pandey P.M., Garg M.P., Khanna R., Batra N.K. Minimization of kerf taper angle and kerf width using Taguchi’s method in abrasive water jet machiningof marble. Procedia Mater. Sci. 2014;6:140–149. doi: 10.1016/j.mspro.2014.07.017. DOI

Shukla R., Singh D. Experimentation investigation of abrasive water jet machining parameters using Taguchi and Evolutionary optimization techniques. Swarm Evol. Comput. 2017;32:167–183. doi: 10.1016/j.swevo.2016.07.002. DOI

Perec A., Pude F., Kaufeld M., Wegener K. Obtaining the selected surface roughness by means of mathematical model based parameter optimization in abrasive waterjet cutting. Stroj. Vestn. J. Mech. Eng. 2017;63:606–613. doi: 10.5545/sv-jme.2017.4463. DOI

Masoud F., Sapuan S.M., Ariffin M.K.A.M., Nukman Y., Bayraktar E. Experimental analysis of kerf taper angle in cutting process of sugar palm fiber reinforced unsaturated polyester composites with laser beam and abrasive water jet cutting technologies. Polymers. 2021;13:2543. doi: 10.3390/polym13152543. PubMed DOI PMC

Hlaváč L.M., Krajcarz D., Hlaváčová I.M., Spadło S. Precision comparison of analytical and statistical-regression models for AWJ cutting. Precis. Eng. J. Int. Soc. Precis. Eng. Nanotechnol. 2017;50:148–159. doi: 10.1016/j.precisioneng.2017.05.002. DOI

Zeng J.Y., Kim T.J. An erosion model of polycrystalline ceramics in abrasive waterjet cutting. Wear. 1996;193:207–217. doi: 10.1016/0043-1648(95)06721-3. DOI

Momber A.W. Stress-strain relation for water-driven particle erosion of quasi-brittle materials. Theor. Appl. Fract. Mec. 2001;35:19–37. doi: 10.1016/S0167-8442(00)00046-X. DOI

Paul S., Hoogstrate A.M., Luttervelt C.A., Kals H.J.J. Analytical modelling of the total depth of cut in the abrasive water jet machining of polycrystalline brittle material. J. Mater. Process. Technol. 1998;73:206–212. doi: 10.1016/S0924-0136(97)00230-6. DOI

Srinivas S., Babu N.R. An analytical model for predicting depth of cut in abrasive waterjet cutting of ductile materials considering the deflection of jet in lateral direction. Int. J. Abras. Technol. 2009;2:259–278. doi: 10.1504/IJAT.2009.024398. DOI

Paul S., Hoogstrate A.M., Luttervelt C.A., Kals H.J.J. Analytical and experimental modelling of the abrasive water jet cutting of ductile materials. J. Mater. Process. Technol. 1998;73:189–199. doi: 10.1016/S0924-0136(97)00228-8. DOI

Deam R.T., Lemma E., Ahmed D.H. Modelling of the abrasive water jet cutting process. Wear. 2004;257:877–891. doi: 10.1016/j.wear.2004.04.002. DOI

CorelDRAW® Home & Student 2018. Corel Corporation; Ottawa, ON, Canada: 2018. Graphics Suite.

Kunčická L., Kocich R. Deformation behaviour of Cu-Al clad composites produced by rotary swaging; Proceedings of the 5th Global Conference on Polymer and Composite Materials (PCM 2018); Kitakyushu, Japan. 10–13 April 2018; p. 012029. DOI

Kunčická L., Kocich R., Dvořák K., Macháčková A. Rotary swaged laminated Cu-Al composites: Effect of structure on residual stress and mechanical and electric properties. Mater. Sci. Eng. A. 2019;742:743–750. doi: 10.1016/j.msea.2018.11.026. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...