Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration

. 2019 Dec 12 ; 13 (2) : . [epub] 20191212

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31645369

Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.

Zobrazit více v PubMed

Askeland G., Rodinova M., Štufková H., Dosoudilova Z., Baxa M., Smatlikova P., Bohuslavova B., Klempir J., Nguyen T. D., Kuśnierczyk A. et al. (2018). A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. Dis. Model. Mech. 11, dmm035949 10.1242/dmm.035949 PubMed DOI PMC

Aziz N. A., van der Burg J. M. M., Tabrizi S. J. and Landwehrmeyer G. B. (2018). Overlap between age-at-onset and disease-progression determinants in Huntington disease. Neurology 90, e2099-e2106. 10.1212/WNL.0000000000005690 PubMed DOI PMC

Bartzokis G., Lu P. H., Tishler T. A., Fong S. M., Oluwadara B., Finn J. P., Huang D., Bordelon Y., Mintz J. and Perlman S. (2007). Myelin breakdown and iron changes in Huntington's disease: pathogenesis and treatment implications. Neurochem. Res. 32, 1655-1664. 10.1007/s11064-007-9352-7 PubMed DOI

Bates G. P., Dorsey R., Gusella J. F., Hayden M. R., Kay C., Leavitt B. R., Nance M., Ross C. A., Scahill R. I., Wetzel R. et al. (2015). Huntington disease. Nat. Rev. Dis. 1, 15005 10.1038/nrdp.2015.5 PubMed DOI

Baxa M., Hruska-Plochan M., Juhas S., Vodicka P., Pavlok A., Juhasova J., Miyanohara A., Nejime T., Klima J., Macakova M. et al. (2013). A transgenic minipig model of Huntington's disease. J. Huntingtons Dis. 2, 47-68. 10.1136/jnnp.2010.222570.26 PubMed DOI

Benn C. L., Landles C., Li H., Strand A. D., Woodman B., Sathasivam K., Li S.-H., Ghazi-Noori S., Hockly E., Faruque S. M. N. N. et al. (2005). Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington's disease. Hum. Mol. Genet. 14, 3065-3078. 10.1093/hmg/ddi340 PubMed DOI

Chen Y. and Swanson R. A. (2003). Astrocytes and brain injury. J. Cereb. Blood Flow Metab. 23, 137-149. 10.1097/01.WCB.0000044631.80210.3C PubMed DOI

Davies S. W. and Scherzinger E. (1997). Nuclear inclusions in Huntington's disease. Trends Cell Biol. 7, 422 10.1016/S0962-8924(97)88136-6 PubMed DOI

Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L. and Bates G. P. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90, 537-548. 10.1016/S0092-8674(00)80513-9 PubMed DOI

Evers M. M., Miniarikova J., Juhas S., Vallès A., Bohuslavova B., Juhasova J., Skalnikova H. K., Vodicka P., Valekova I., Brouwers C. et al. (2018). AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington's disease minipig model. Mol. Ther. 26, 2163-2177. 10.1016/j.ymthe.2018.06.021 PubMed DOI PMC

Genetic Modifiers of Huntington's Disease (GeM-HD) Consortium (2015). Identification of genetic factors that modify clinical onset of Huntington's disease. Cell 162, 516-526. 10.1016/j.cell.2015.07.003 PubMed DOI PMC

Graham R. K., Slow E. J., Deng Y., Bissada N., Lu G., Pearson J., Shehadeh J., Leavitt B. R., Raymond L. A. and Hayden M. R. (2006). Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. Neurobiol. Dis. 21, 444-455. 10.1016/j.nbd.2005.08.007 PubMed DOI

Gusella J. F., Macdonald M. E. and Lee J. M. (2014). Genetic modifiers of Huntington's disease. Mov. Disord. 29, 1359-1365. 10.1002/mds.26001 PubMed DOI

Gutiérrez M. L., Guevara J. and Barrera L. A. (2012). Semi-automatic grading system in histologic and immunohistochemistry analysis to evaluate in vitro chondrogenesis. Univ. Sci. 17, 167 10.11144/javeriana.SC17-2.sags DOI

Harjes P. and Wanker E. E. (2003). The hunt for huntingtin function: interaction partners tell many different stories. Trends Biochem Sci. 28, 425-433. 10.1016/S0968-0004(03)00168-3 PubMed DOI

Heng M. Y., Tallaksen-Greene S. J., Detloff P. J. and Albin R. L. (2007). Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington's disease. J. Neurosci. 27, 8989-8998. 10.1523/JNEUROSCI.1830-07.2007 PubMed DOI PMC

Hersch S. M., Schifitto G., Oakes D., Bredlau A.-L., Meyers C. M., Nahin R., Rosas H. D. and Huntington Study Group CREST-E Investigators and Coordinators (2017). The CREST-E study of creatine for Huntington disease: a randomized controlled trial. Neurology 89, 594-601. 10.1212/WNL.0000000000004209 PubMed DOI PMC

Hinkle J. T., Dawson V. L. and Dawson T. M. (2019). The A1 astrocyte paradigm: new avenues for pharmacological intervention in neurodegeneration. Mov. Disord. 34, 959-969 mds.27718 10.1002/mds.27718 PubMed DOI PMC

Hoffner G., Soues S. and Djian P. (2007). Aggregation of expanded huntingtin in the brains of patients with Huntington disease. Prion 1, 26-31. 10.4161/pri.1.1.4056 PubMed DOI PMC

Huntington Study Group (2001). A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. Neurology 57, 397-404. PubMed

Jacobsen J. C., Bawden C. S., Rudiger S. R., McLaughlan C. J., Reid S. J., Waldvogel H. J., MacDonald M. E., Gusella J. F., Walker S. K., Kelly J. M. et al. (2010). An ovine transgenic Huntington's disease model. Hum. Mol. Genet. 19, 1873-1882. 10.1093/hmg/ddq063 PubMed DOI PMC

Jansen A. H. P., van Hal M., Op, den Kelder I. C., Meier R. T., de Ruiter A.-A., Schut M. H., Smith D. L., Grit C., Brouwer N.,  et al. (2017). Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. Glia 65, 50-61. 10.1002/glia.23050 PubMed DOI PMC

Jortner B. S. (2006). The return of the dark neuron. a histological artifact complicating contemporary neurotoxicologic evaluation. NeuroToxicology 27, 628-634. 10.1016/j.neuro.2006.03.002 PubMed DOI

Krizova J., Stufkova H., Rodinova M., Macakova M., Bohuslavova B., Vidinska D., Klima J., Ellederova Z., Pavlok A., Howland D. S. et al. (2017). Mitochondrial metabolism in a large-animal model of Huntington disease: the hunt for biomarkers in the spermatozoa of presymptomatic minipigs. Neurodegener. Dis. 17, 213-226. 10.1159/000475467 PubMed DOI

Lajoie P. and Snapp E. L. (2010). Formation and toxicity of soluble polyglutamine oligomers in living cells. PLoS ONE 5, e15245 10.1371/journal.pone.0015245 PubMed DOI PMC

Li H., Li S.-H., Yu Z.-X., Shelbourne P. and Li X.-J. (2001). Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. J. Neurosci. 21, 8473-8481. 10.1523/JNEUROSCI.21-21-08473.2001 PubMed DOI PMC

Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., Bennett M. L., Münch A. E., Chung W.-S., Peterson T. C. et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487. 10.1038/nature21029 PubMed DOI PMC

Liedtke W., Edelmann W., Bieri P. L., Chiu F.-C., Cowan N. J., Kucherlapati R. and Raine C. S. (1996). GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. Neuron 17, 607-615. 10.1016/S0896-6273(00)80194-4 PubMed DOI

Macakova M., Bohuslavova B., Vochozkova P., Pavlok A., Sedlackova M., Vidinska D., Vochyanova K., Liskova I., Valekova I., Baxa M. et al. (2016). Mutated huntingtin causes testicular pathology in transgenic minipig boars. Neurodegener. Dis. 16, 245-259. 10.1159/000443665 PubMed DOI

McGarry A., McDermott M., Kieburtz K., de Blieck E. A., Beal F., Marder K., Ross C., Shoulson I., Gilbert P., Mallonee W. M. et al. (2017). A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88, 152-159. 10.1212/WNL.0000000000003478 PubMed DOI PMC

Menalled L., El-Khodor B. F., Patry M., Suárez-Fariñas M., Orenstein S. J., Zahasky B., Leahy C., Wheeler V., Yang X. W., MacDonald M. et al. (2009). Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models. Neurobiol. Dis. 35, 319-336. 10.1016/j.nbd.2009.05.007 PubMed DOI PMC

Mende-Mueller L. M., Toneff T., Hwang S.-R., Chesselet M.-F. and Hook V. Y. H. (2001). Tissue-specific proteolysis of huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. J. Neurosci. 21, 1830-1837. 10.1523/JNEUROSCI.21-06-01830.2001 PubMed DOI PMC

Miller J. P., Holcomb J., Al-Ramahi I., de Haro M., Gafni J., Zhang N., Kim E., Sanhueza M., Torcassi C., Kwak S. et al. (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. Neuron 67, 199-212. 10.1016/j.neuron.2010.06.021 PubMed DOI PMC

Nixon R. A., Wegiel J., Kumar A., Yu W. H., Peterhoff C., Cataldo A. and Cuervo A. M. (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J. Neuropathol. Exp. Neurol. 64, 113-122. 10.1093/jnen/64.2.113 PubMed DOI

Paulsen J. S. (2010). Early detection of Huntington's disease. Future Neurol. 5, 85-104. 10.2217/fnl.09.78 PubMed DOI PMC

Peferoen L., Kipp M., van der Valk P., van Noort J. M. and Amor S. (2014). Oligodendrocyte-microglia cross-talk in the central nervous system. Immunology 141, 302-313. 10.1111/imm.12163 PubMed DOI PMC

Politis M., Lahiri N., Niccolini F., Su P., Wu K., Giannetti P., Scahill R. I., Turkheimer F. E., Tabrizi S. J. and Piccini P. (2015). Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. Neurobiol. Dis. 83, 115-121. 10.1016/j.nbd.2015.08.011 PubMed DOI

Rodinova M., Krizova J., Stufkova H., Bohuslavova B., Askeland G., Dosoudilova Z., Juhas S., Juhasova J., Ellederova Z., Zeman J. et al. (2019). Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease. Dis. Model. Mech. 12, dmm038737 10.1242/dmm.038737. PubMed DOI PMC

Rosas H. D., Salat D. H., Lee S. Y., Zaleta A. K., Hevelone N. and Hersch S. M. (2008). Complexity and heterogeneity: what drives the ever-changing brain in Huntington's disease? Ann. N. Y. Acad. Sci. 1147, 196-205. 10.1196/annals.1427.034 PubMed DOI PMC

Sathasivam K., Lane A., Legleiter J., Warley A., Woodman B., Finkbeiner S., Paganetti P., Muchowski P. J., Wilson S. and Bates G. P. (2010). Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease. Hum. Mol. Genet. 19, 65-78. 10.1093/hmg/ddp467 PubMed DOI PMC

Saudou F., Finkbeiner S., Devys D. and Greenberg M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95, 55-66. 10.1016/S0092-8674(00)81782-1 PubMed DOI

Swami M., Hendricks A. E., Gillis T., Massood T., Mysore J., Myers R. H. and Wheeler V. C. (2009). Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 18, 3039-3047. 10.1093/hmg/ddp242 PubMed DOI PMC

Teo R. T. Y., Hong X., Yu-Taeger L., Huang Y., Tan L. J., Xie Y., To X. V., Guo L., Rajendran R., Novati A. et al. (2016). Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. Hum. Mol. Genet. 25, 2621-2632. 10.1093/hmg/ddw122 PubMed DOI PMC

Truant R., Atwal R. S., Desmond C., Munsie L. and Tran T. (2008). Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. FEBS J. 275, 4252-4262. 10.1111/j.1742-4658.2008.06561.x PubMed DOI

Turmaine M., Raza A., Mahal A., Mangiarini L., Bates G. P. and Davies S. W. (2000). Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. Proc. Natl. Acad. Sci. USA 97, 8093-8097. 10.1073/pnas.110078997 PubMed DOI PMC

Uchida M., Shimatsu Y., Onoe K., Matsuyama N., Niki R., Ikeda J.-E. and Imai H. (2001). Production of transgenic miniature pigs by pronuclear microinjection. Transgenic Res. 10, 577-582. 10.1023/A:1013059917280 PubMed DOI

Usdin M. T., Shelbourne P. F., Myers R. M. and Madison D. V. (1999). Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. Hum. Mol. Genet. 8, 839-846. 10.1093/hmg/8.5.839 PubMed DOI

Valekova I., Jarkovska K., Kotrcova E., Bucci J., Ellederova Z., Juhas S., Motlik J., Gadher S. J. and Kovarova H. (2016). Revelation of the IFNalpha, IL-10, IL-8 and IL-1beta as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington's disease model. J. Neuroimmunol. 293, 71-81. 10.1016/j.jneuroim.2016.02.012 PubMed DOI

Vidinská D., Vochozková P., Šmatlíková P., Ardan T., Klíma J., Juhás ., Juhásová J., Bohuslavová B., Baxa M., Valeková I. et al. (2018). Gradual phenotype development in Huntington disease transgenic minipig model at 24 months of age. Neurodegener. Dis. 18, 107-119. 10.1159/000488592 PubMed DOI

Vodička P., Smetana K. Jr., Dvořánková B., Emerick T., Xu Y. Z., Ourednik J., Ourednik V. and Motlík J. (2005). The miniature pig as an animal model in biomedical research. Ann. N. Y. Acad. Sci. 1049, 161-171. 10.1196/annals.1334.015 PubMed DOI

Walz W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. Neurochem. Int. 36, 291-300. 10.1016/S0197-0186(99)00137-0 PubMed DOI

Woodman B., Butler R., Landles C., Lupton M. K., Tse J., Hockly E., Moffitt H., Sathasivam K. and Bates G. P. (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. Brain Res. Bull. 72, 83-97. 10.1016/j.brainresbull.2006.11.004 PubMed DOI

Yan S., Tu Z., Liu Z., Fan N., Yang H., Yang S., Yang W., Zhao Y., Ouyang Z., Lai C. et al. (2018). A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's Disease. Cell 173, 989-1002.e13. 10.1016/j.cell.2018.03.005 PubMed DOI PMC

Yang D., Wang C.-E., Zhao B., Li W., Ouyang Z., Liu Z., Yang H., Fan P., O'Neill A., Gu W. et al. (2010). Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. Hum. Mol. Genet. 19, 3983-3994. 10.1093/hmg/ddq313 PubMed DOI PMC

Zuccato C., Valenza M. and Cattaneo E. (2010). Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol. Rev. 90, 905-981. 10.1152/physrev.00041.2009 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace