Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31645369
PubMed Central
PMC6918760
DOI
10.1242/dmm.041319
PII: dmm.041319
Knihovny.cz E-zdroje
- Klíčová slova
- Brain, Huntingtin, Large animal model, Neuropathology, TgHD,
- MeSH
- bílá hmota patologie ultrastruktura MeSH
- biologické markery metabolismus MeSH
- degenerace nervu patologie MeSH
- geneticky modifikovaná zvířata MeSH
- genotyp MeSH
- hmotnostní úbytek MeSH
- Huntingtonova nemoc patologie MeSH
- index tělesné hmotnosti MeSH
- lidé MeSH
- miniaturní prasata MeSH
- modely nemocí na zvířatech MeSH
- motorické korové centrum patologie ultrastruktura MeSH
- myelinová pochva metabolismus MeSH
- nucleus caudatus patologie ultrastruktura MeSH
- prasata MeSH
- protein huntingtin metabolismus MeSH
- proteinové agregáty MeSH
- stárnutí patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické markery MeSH
- Htt protein, mouse MeSH Prohlížeč
- protein huntingtin MeSH
- proteinové agregáty MeSH
Recently developed therapeutic approaches for the treatment of Huntington's disease (HD) require preclinical testing in large animal models. The minipig is a suitable experimental animal because of its large gyrencephalic brain, body weight of 70-100 kg, long lifespan, and anatomical, physiological and metabolic resemblance to humans. The Libechov transgenic minipig model for HD (TgHD) has proven useful for proof of concept of developing new therapies. However, to evaluate the efficacy of different therapies on disease progression, a broader phenotypic characterization of the TgHD minipig is needed. In this study, we analyzed the brain tissues of TgHD minipigs at the age of 48 and 60-70 months, and compared them to wild-type animals. We were able to demonstrate not only an accumulation of different forms of mutant huntingtin (mHTT) in TgHD brain, but also pathological changes associated with cellular damage caused by mHTT. At 48 months, we detected pathological changes that included the demyelination of brain white matter, loss of function of striatal neurons in the putamen and activation of microglia. At 60-70 months, we found a clear marker of neurodegeneration: significant cell loss detected in the caudate nucleus, putamen and cortex. This was accompanied by clusters of structures accumulating in the neurites of some neurons, a sign of their degeneration that is also seen in Alzheimer's disease, and a significant activation of astrocytes. In summary, our data demonstrate age-dependent neuropathology with later onset of neurodegeneration in TgHD minipigs.
Zobrazit více v PubMed
Askeland G., Rodinova M., Štufková H., Dosoudilova Z., Baxa M., Smatlikova P., Bohuslavova B., Klempir J., Nguyen T. D., Kuśnierczyk A. et al. (2018). A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. PubMed DOI PMC
Aziz N. A., van der Burg J. M. M., Tabrizi S. J. and Landwehrmeyer G. B. (2018). Overlap between age-at-onset and disease-progression determinants in Huntington disease. PubMed DOI PMC
Bartzokis G., Lu P. H., Tishler T. A., Fong S. M., Oluwadara B., Finn J. P., Huang D., Bordelon Y., Mintz J. and Perlman S. (2007). Myelin breakdown and iron changes in Huntington's disease: pathogenesis and treatment implications. PubMed DOI
Bates G. P., Dorsey R., Gusella J. F., Hayden M. R., Kay C., Leavitt B. R., Nance M., Ross C. A., Scahill R. I., Wetzel R. et al. (2015). Huntington disease. PubMed DOI
Baxa M., Hruska-Plochan M., Juhas S., Vodicka P., Pavlok A., Juhasova J., Miyanohara A., Nejime T., Klima J., Macakova M. et al. (2013). A transgenic minipig model of Huntington's disease. PubMed DOI
Benn C. L., Landles C., Li H., Strand A. D., Woodman B., Sathasivam K., Li S.-H., Ghazi-Noori S., Hockly E., Faruque S. M. N. N. et al. (2005). Contribution of nuclear and extranuclear polyQ to neurological phenotypes in mouse models of Huntington's disease. PubMed DOI
Chen Y. and Swanson R. A. (2003). Astrocytes and brain injury. PubMed DOI
Davies S. W. and Scherzinger E. (1997). Nuclear inclusions in Huntington's disease. PubMed DOI
Davies S. W., Turmaine M., Cozens B. A., DiFiglia M., Sharp A. H., Ross C. A., Scherzinger E., Wanker E. E., Mangiarini L. and Bates G. P. (1997). Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. PubMed DOI
Evers M. M., Miniarikova J., Juhas S., Vallès A., Bohuslavova B., Juhasova J., Skalnikova H. K., Vodicka P., Valekova I., Brouwers C. et al. (2018). AAV5-miHTT gene therapy demonstrates broad distribution and strong human mutant huntingtin lowering in a Huntington's disease minipig model. PubMed DOI PMC
Genetic Modifiers of Huntington's Disease (GeM-HD) Consortium (2015). Identification of genetic factors that modify clinical onset of Huntington's disease. PubMed DOI PMC
Graham R. K., Slow E. J., Deng Y., Bissada N., Lu G., Pearson J., Shehadeh J., Leavitt B. R., Raymond L. A. and Hayden M. R. (2006). Levels of mutant huntingtin influence the phenotypic severity of Huntington disease in YAC128 mouse models. PubMed DOI
Gusella J. F., Macdonald M. E. and Lee J. M. (2014). Genetic modifiers of Huntington's disease. PubMed DOI
Gutiérrez M. L., Guevara J. and Barrera L. A. (2012). Semi-automatic grading system in histologic and immunohistochemistry analysis to evaluate in vitro chondrogenesis. DOI
Harjes P. and Wanker E. E. (2003). The hunt for huntingtin function: interaction partners tell many different stories. PubMed DOI
Heng M. Y., Tallaksen-Greene S. J., Detloff P. J. and Albin R. L. (2007). Longitudinal evaluation of the Hdh(CAG)150 knock-in murine model of Huntington's disease. PubMed DOI PMC
Hersch S. M., Schifitto G., Oakes D., Bredlau A.-L., Meyers C. M., Nahin R., Rosas H. D. and Huntington Study Group CREST-E Investigators and Coordinators (2017). The CREST-E study of creatine for Huntington disease: a randomized controlled trial. PubMed DOI PMC
Hinkle J. T., Dawson V. L. and Dawson T. M. (2019). The A1 astrocyte paradigm: new avenues for pharmacological intervention in neurodegeneration. PubMed DOI PMC
Hoffner G., Soues S. and Djian P. (2007). Aggregation of expanded huntingtin in the brains of patients with Huntington disease. PubMed DOI PMC
Huntington Study Group (2001). A randomized, placebo-controlled trial of coenzyme Q10 and remacemide in Huntington's disease. PubMed
Jacobsen J. C., Bawden C. S., Rudiger S. R., McLaughlan C. J., Reid S. J., Waldvogel H. J., MacDonald M. E., Gusella J. F., Walker S. K., Kelly J. M. et al. (2010). An ovine transgenic Huntington's disease model. PubMed DOI PMC
Jansen A. H. P., van Hal M., Op, den Kelder I. C., Meier R. T., de Ruiter A.-A., Schut M. H., Smith D. L., Grit C., Brouwer N., et al. (2017). Frequency of nuclear mutant huntingtin inclusion formation in neurons and glia is cell-type-specific. PubMed DOI PMC
Jortner B. S. (2006). The return of the dark neuron. a histological artifact complicating contemporary neurotoxicologic evaluation. PubMed DOI
Krizova J., Stufkova H., Rodinova M., Macakova M., Bohuslavova B., Vidinska D., Klima J., Ellederova Z., Pavlok A., Howland D. S. et al. (2017). Mitochondrial metabolism in a large-animal model of Huntington disease: the hunt for biomarkers in the spermatozoa of presymptomatic minipigs. PubMed DOI
Lajoie P. and Snapp E. L. (2010). Formation and toxicity of soluble polyglutamine oligomers in living cells. PubMed DOI PMC
Li H., Li S.-H., Yu Z.-X., Shelbourne P. and Li X.-J. (2001). Huntingtin aggregate-associated axonal degeneration is an early pathological event in Huntington's disease mice. PubMed DOI PMC
Liddelow S. A., Guttenplan K. A., Clarke L. E., Bennett F. C., Bohlen C. J., Schirmer L., Bennett M. L., Münch A. E., Chung W.-S., Peterson T. C. et al. (2017). Neurotoxic reactive astrocytes are induced by activated microglia. PubMed DOI PMC
Liedtke W., Edelmann W., Bieri P. L., Chiu F.-C., Cowan N. J., Kucherlapati R. and Raine C. S. (1996). GFAP is necessary for the integrity of CNS white matter architecture and long-term maintenance of myelination. PubMed DOI
Macakova M., Bohuslavova B., Vochozkova P., Pavlok A., Sedlackova M., Vidinska D., Vochyanova K., Liskova I., Valekova I., Baxa M. et al. (2016). Mutated huntingtin causes testicular pathology in transgenic minipig boars. PubMed DOI
McGarry A., McDermott M., Kieburtz K., de Blieck E. A., Beal F., Marder K., Ross C., Shoulson I., Gilbert P., Mallonee W. M. et al. (2017). A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. PubMed DOI PMC
Menalled L., El-Khodor B. F., Patry M., Suárez-Fariñas M., Orenstein S. J., Zahasky B., Leahy C., Wheeler V., Yang X. W., MacDonald M. et al. (2009). Systematic behavioral evaluation of Huntington's disease transgenic and knock-in mouse models. PubMed DOI PMC
Mende-Mueller L. M., Toneff T., Hwang S.-R., Chesselet M.-F. and Hook V. Y. H. (2001). Tissue-specific proteolysis of huntingtin (htt) in human brain: evidence of enhanced levels of N- and C-terminal htt fragments in Huntington's disease striatum. PubMed DOI PMC
Miller J. P., Holcomb J., Al-Ramahi I., de Haro M., Gafni J., Zhang N., Kim E., Sanhueza M., Torcassi C., Kwak S. et al. (2010). Matrix metalloproteinases are modifiers of huntingtin proteolysis and toxicity in Huntington's disease. PubMed DOI PMC
Nixon R. A., Wegiel J., Kumar A., Yu W. H., Peterhoff C., Cataldo A. and Cuervo A. M. (2005). Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. PubMed DOI
Paulsen J. S. (2010). Early detection of Huntington's disease. PubMed DOI PMC
Peferoen L., Kipp M., van der Valk P., van Noort J. M. and Amor S. (2014). Oligodendrocyte-microglia cross-talk in the central nervous system. PubMed DOI PMC
Politis M., Lahiri N., Niccolini F., Su P., Wu K., Giannetti P., Scahill R. I., Turkheimer F. E., Tabrizi S. J. and Piccini P. (2015). Increased central microglial activation associated with peripheral cytokine levels in premanifest Huntington's disease gene carriers. PubMed DOI
Rodinova M., Krizova J., Stufkova H., Bohuslavova B., Askeland G., Dosoudilova Z., Juhas S., Juhasova J., Ellederova Z., Zeman J. et al. (2019). Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease. PubMed DOI PMC
Rosas H. D., Salat D. H., Lee S. Y., Zaleta A. K., Hevelone N. and Hersch S. M. (2008). Complexity and heterogeneity: what drives the ever-changing brain in Huntington's disease? PubMed DOI PMC
Sathasivam K., Lane A., Legleiter J., Warley A., Woodman B., Finkbeiner S., Paganetti P., Muchowski P. J., Wilson S. and Bates G. P. (2010). Identical oligomeric and fibrillar structures captured from the brains of R6/2 and knock-in mouse models of Huntington's disease. PubMed DOI PMC
Saudou F., Finkbeiner S., Devys D. and Greenberg M. E. (1998). Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. PubMed DOI
Swami M., Hendricks A. E., Gillis T., Massood T., Mysore J., Myers R. H. and Wheeler V. C. (2009). Somatic expansion of the Huntington's disease CAG repeat in the brain is associated with an earlier age of disease onset. PubMed DOI PMC
Teo R. T. Y., Hong X., Yu-Taeger L., Huang Y., Tan L. J., Xie Y., To X. V., Guo L., Rajendran R., Novati A. et al. (2016). Structural and molecular myelination deficits occur prior to neuronal loss in the YAC128 and BACHD models of Huntington disease. PubMed DOI PMC
Truant R., Atwal R. S., Desmond C., Munsie L. and Tran T. (2008). Huntington's disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases. PubMed DOI
Turmaine M., Raza A., Mahal A., Mangiarini L., Bates G. P. and Davies S. W. (2000). Nonapoptotic neurodegeneration in a transgenic mouse model of Huntington's disease. PubMed DOI PMC
Uchida M., Shimatsu Y., Onoe K., Matsuyama N., Niki R., Ikeda J.-E. and Imai H. (2001). Production of transgenic miniature pigs by pronuclear microinjection. PubMed DOI
Usdin M. T., Shelbourne P. F., Myers R. M. and Madison D. V. (1999). Impaired synaptic plasticity in mice carrying the Huntington's disease mutation. PubMed DOI
Valekova I., Jarkovska K., Kotrcova E., Bucci J., Ellederova Z., Juhas S., Motlik J., Gadher S. J. and Kovarova H. (2016). Revelation of the IFNalpha, IL-10, IL-8 and IL-1beta as promising biomarkers reflecting immuno-pathological mechanisms in porcine Huntington's disease model. PubMed DOI
Vidinská D., Vochozková P., Šmatlíková P., Ardan T., Klíma J., Juhás ., Juhásová J., Bohuslavová B., Baxa M., Valeková I. et al. (2018). Gradual phenotype development in Huntington disease transgenic minipig model at 24 months of age. PubMed DOI
Vodička P., Smetana K. Jr., Dvořánková B., Emerick T., Xu Y. Z., Ourednik J., Ourednik V. and Motlík J. (2005). The miniature pig as an animal model in biomedical research. PubMed DOI
Walz W. (2000). Role of astrocytes in the clearance of excess extracellular potassium. PubMed DOI
Woodman B., Butler R., Landles C., Lupton M. K., Tse J., Hockly E., Moffitt H., Sathasivam K. and Bates G. P. (2007). The Hdh(Q150/Q150) knock-in mouse model of HD and the R6/2 exon 1 model develop comparable and widespread molecular phenotypes. PubMed DOI
Yan S., Tu Z., Liu Z., Fan N., Yang H., Yang S., Yang W., Zhao Y., Ouyang Z., Lai C. et al. (2018). A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's Disease. PubMed DOI PMC
Yang D., Wang C.-E., Zhao B., Li W., Ouyang Z., Liu Z., Yang H., Fan P., O'Neill A., Gu W. et al. (2010). Expression of Huntington's disease protein results in apoptotic neurons in the brains of cloned transgenic pigs. PubMed DOI PMC
Zuccato C., Valenza M. and Cattaneo E. (2010). Molecular mechanisms and potential therapeutical targets in Huntington's disease. PubMed DOI