Acrosin is essential for sperm penetration through the zona pellucida in hamsters

. 2020 Feb 04 ; 117 (5) : 2513-2518. [epub] 20200121

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31964830

During natural fertilization, mammalian spermatozoa must pass through the zona pellucida before reaching the plasma membrane of the oocyte. It is assumed that this step involves partial lysis of the zona by sperm acrosomal enzymes, but there has been no unequivocal evidence to support this view. Here we present evidence that acrosin, an acrosomal serine protease, plays an essential role in sperm penetration of the zona. We generated acrosin-knockout (KO) hamsters, using an in vivo transfection CRISPR/Cas9 system. Homozygous mutant males were completely sterile. Acrosin-KO spermatozoa ascended the female genital tract and reached ovulated oocytes in the oviduct ampulla, but never fertilized them. In vitro fertilization (IVF) experiments revealed that mutant spermatozoa attached to the zona, but failed to penetrate it. When the zona pellucida was removed before IVF, all oocytes were fertilized. This indicates that in hamsters, acrosin plays an indispensable role in allowing fertilizing spermatozoa to penetrate the zona. This study also suggests that the KO hamster system would be a useful model for identifying new gene functions or analyzing human and animal disorders because of its technical facility and reproducibility.

Erratum v

PubMed

Zobrazit více v PubMed

Yanagimachi R., “Mammalian fertilization” in The Physiology of Reproduction, Knobil N. J. E., Ed. (Raven Press, New York, 1994), pp. 189–317.

Green D. P., Mammalian sperm cannot penetrate the zona pellucida solely by force. Exp. Cell Res. 169, 31–38 (1987). PubMed

Honda A., Siruntawineti J., Baba T., Role of acrosomal matrix proteases in sperm-zona pellucida interactions. Hum. Reprod. Update 8, 405–412 (2002). PubMed

Mao H. T., Yang W. X., Modes of acrosin functioning during fertilization. Gene 526, 75–79 (2013). PubMed

Dudkiewicz A. B., Inhibition of fertilization in the rabbit by anti-acrosin antibodies. Gamete Res. 8, 183–197 (1983).

Liu D. Y., Baker H. W., Inhibition of acrosin activity with a trypsin inhibitor blocks human sperm penetration of the zona pellucida. Biol. Reprod. 48, 340–348 (1993). PubMed

Baba T., Azuma S., Kashiwabara S., Toyoda Y., Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J. Biol. Chem. 269, 31845–31849 (1994). PubMed

Yamagata K., Honda A., Kashiwabara S. I., Baba T., Difference of acrosomal serine protease system between mouse and other rodent sperm. Dev. Genet. 25, 115–122 (1999). PubMed

Mashimo T., Gene targeting technologies in rats: Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev. Growth Differ. 56, 46–52 (2014). PubMed

Isotani A., et al. , A delayed sperm penetration of cumulus layers by disruption of acrosin gene in rats. Biol. Reprod. 97, 61–68 (2017). PubMed

Whittaker D., “Hamster” in The UFAW Handbook on the Care and Management of Laboratory Animals, Trevor P., Ed. (Blackwell Science Ltd., Oxford, 1999), vol. 1, pp. 356–366.

Hirose M., Ogura A., The golden (Syrian) hamster as a model for the study of reproductive biology: Past, present, and future. Reprod. Med. Biol. 18, 34–39 (2018). PubMed PMC

Yanagimachi R., Chang M. C., Fertilization of hamster eggs in vitro. Nature 200, 281–282 (1963). PubMed

Austin C. R., Bishop M. W. H., Role of the rodent acrosome and perforatorium in fertilization. Proc. R. Soc. Lond. B Biol. Sci. 149, 241–248 (1958). PubMed

Cummins J. M., Yanagimachi R., Development of ability to penetrate the cumulus oophorus by hamster spermatozoa capacitated in vitro, in relation to the timing of the acrosome reaction. Gamete Res. 15, 187–212 (1986).

Schini S. A., Bavister B. D., Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192 (1988). PubMed

Gurumurthy C. B., et al. , Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 14, 2452–2482 (2019). PubMed

Fraser L. R., p-Aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction. J. Reprod. Fertil. 65, 185–194 (1982). PubMed

Takano H., Yanagimachi R., Urch U. A., Evidence that acrosin activity is important for the development of fusibility of mammalian spermatozoa with the oolemma: Inhibitor studies using the golden hamster. Zygote 1, 79–91 (1993). PubMed

Kawano N., et al. , Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro. Biol. Reprod. 83, 359–369 (2010). PubMed

Jedlicki A., Barros C., Scanning electron microscope study of in vitro prepenetration gamete interactions. Gamete Res. 11, 121–131 (1985).

Inoue N., Satouh Y., Ikawa M., Okabe M., Yanagimachi R., Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc. Natl. Acad. Sci. U.S.A. 108, 20008–20011 (2011). PubMed PMC

Blanga-Kanfi S., et al. , Rodent phylogeny revised: Analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009). PubMed PMC

Michaux J., Reyes A., Catzeflis F., Evolutionary history of the most speciose mammals: Molecular phylogeny of muroid rodents. Mol. Biol. Evol. 18, 2017–2031 (2001). PubMed

Nakanishi T., et al. , Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 449, 277–283 (1999). PubMed

Okabe M., Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J. Androl. 17, 646–652 (2015). PubMed PMC

Ferrer M., et al. , MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res. 349, 881–895 (2012). PubMed PMC

Tesarík J., Drahorád J., Pĕknicová J., Subcellular immunochemical localization of acrosin in human spermatozoa during the acrosome reaction and zona pellucida penetration. Fertil. Steril. 50, 133–141 (1988). PubMed

Yanagimachi R., Teichman R. J., Cytochemical demonstration of acrosomal proteinase in mammalian and avian spermatozoa by a silver proteinate method. Biol. Reprod. 6, 87–97 (1972). PubMed

Yunes R., Melendez J., Valdivia M., Barros C., Golden hamster perivitelline spermatozoa do not show proacrosin/acrosin at the inner acrosomal membrane. Biol. Res. 25, 91–93 (1992). PubMed

Hosseini S. H., Sadighi Gilani M. A., Meybodi A. M., Sabbaghian M., The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects. J. Assist. Reprod. Genet. 34, 505–510 (2017). PubMed PMC

Honda A., Yamagata K., Sugiura S., Watanabe K., Baba T., A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J. Biol. Chem. 277, 16976–16984 (2002). PubMed

Bavister B. D., Yanagimachi R., The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol. Reprod. 16, 228–237 (1977). PubMed

Yanagida K., Yanagimachi R., Perreault S. D., Kleinfeld R. G., Thermostability of sperm nuclei assessed by microinjection into hamster oocytes. Biol. Reprod. 44, 440–447 (1991). PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...