Acrosin is essential for sperm penetration through the zona pellucida in hamsters
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31964830
PubMed Central
PMC7007544
DOI
10.1073/pnas.1917595117
PII: 1917595117
Knihovny.cz E-zdroje
- Klíčová slova
- acrosin, fertilization, hamster,
- MeSH
- akrosin genetika metabolismus MeSH
- akrozom metabolismus MeSH
- fertilizace in vitro MeSH
- genový knockout MeSH
- interakce spermie a vajíčka * MeSH
- křečci praví genetika metabolismus MeSH
- spermie enzymologie fyziologie MeSH
- zona pellucida metabolismus MeSH
- zvířata MeSH
- Check Tag
- křečci praví genetika metabolismus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrosin MeSH
During natural fertilization, mammalian spermatozoa must pass through the zona pellucida before reaching the plasma membrane of the oocyte. It is assumed that this step involves partial lysis of the zona by sperm acrosomal enzymes, but there has been no unequivocal evidence to support this view. Here we present evidence that acrosin, an acrosomal serine protease, plays an essential role in sperm penetration of the zona. We generated acrosin-knockout (KO) hamsters, using an in vivo transfection CRISPR/Cas9 system. Homozygous mutant males were completely sterile. Acrosin-KO spermatozoa ascended the female genital tract and reached ovulated oocytes in the oviduct ampulla, but never fertilized them. In vitro fertilization (IVF) experiments revealed that mutant spermatozoa attached to the zona, but failed to penetrate it. When the zona pellucida was removed before IVF, all oocytes were fertilized. This indicates that in hamsters, acrosin plays an indispensable role in allowing fertilizing spermatozoa to penetrate the zona. This study also suggests that the KO hamster system would be a useful model for identifying new gene functions or analyzing human and animal disorders because of its technical facility and reproducibility.
Bioresource Engineering Division RIKEN BioResource Research Center 305 0074 Ibaraki Japan
Bioresource Engineering Division RIKEN BioResource Research Center 305 0074 Ibaraki Japan;
Bioresource Engineering Laboratory RIKEN Cluster for Pioneering Research 351 0198 Saitama Japan
Communal Laboratory National Center for Global Health and Medicine 162 8655 Tokyo Japan
Faculty of Life and Environmental Sciences University of Tsukuba 305 8572 Ibaraki Japan
Faculty of Life and Environmental Sciences University of Tsukuba 305 8572 Ibaraki Japan;
Institute of Laboratory Animals Kyoto University Graduate School of Medicine 606 8501 Kyoto Japan
School of Medicine Tokai University Isehara 259 1193 Kanagawa Japan
Zobrazit více v PubMed
Yanagimachi R., “Mammalian fertilization” in The Physiology of Reproduction, Knobil N. J. E., Ed. (Raven Press, New York, 1994), pp. 189–317.
Green D. P., Mammalian sperm cannot penetrate the zona pellucida solely by force. Exp. Cell Res. 169, 31–38 (1987). PubMed
Honda A., Siruntawineti J., Baba T., Role of acrosomal matrix proteases in sperm-zona pellucida interactions. Hum. Reprod. Update 8, 405–412 (2002). PubMed
Mao H. T., Yang W. X., Modes of acrosin functioning during fertilization. Gene 526, 75–79 (2013). PubMed
Dudkiewicz A. B., Inhibition of fertilization in the rabbit by anti-acrosin antibodies. Gamete Res. 8, 183–197 (1983).
Liu D. Y., Baker H. W., Inhibition of acrosin activity with a trypsin inhibitor blocks human sperm penetration of the zona pellucida. Biol. Reprod. 48, 340–348 (1993). PubMed
Baba T., Azuma S., Kashiwabara S., Toyoda Y., Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J. Biol. Chem. 269, 31845–31849 (1994). PubMed
Yamagata K., Honda A., Kashiwabara S. I., Baba T., Difference of acrosomal serine protease system between mouse and other rodent sperm. Dev. Genet. 25, 115–122 (1999). PubMed
Mashimo T., Gene targeting technologies in rats: Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats. Dev. Growth Differ. 56, 46–52 (2014). PubMed
Isotani A., et al. , A delayed sperm penetration of cumulus layers by disruption of acrosin gene in rats. Biol. Reprod. 97, 61–68 (2017). PubMed
Whittaker D., “Hamster” in The UFAW Handbook on the Care and Management of Laboratory Animals, Trevor P., Ed. (Blackwell Science Ltd., Oxford, 1999), vol. 1, pp. 356–366.
Hirose M., Ogura A., The golden (Syrian) hamster as a model for the study of reproductive biology: Past, present, and future. Reprod. Med. Biol. 18, 34–39 (2018). PubMed PMC
Yanagimachi R., Chang M. C., Fertilization of hamster eggs in vitro. Nature 200, 281–282 (1963). PubMed
Austin C. R., Bishop M. W. H., Role of the rodent acrosome and perforatorium in fertilization. Proc. R. Soc. Lond. B Biol. Sci. 149, 241–248 (1958). PubMed
Cummins J. M., Yanagimachi R., Development of ability to penetrate the cumulus oophorus by hamster spermatozoa capacitated in vitro, in relation to the timing of the acrosome reaction. Gamete Res. 15, 187–212 (1986).
Schini S. A., Bavister B. D., Two-cell block to development of cultured hamster embryos is caused by phosphate and glucose. Biol. Reprod. 39, 1183–1192 (1988). PubMed
Gurumurthy C. B., et al. , Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 14, 2452–2482 (2019). PubMed
Fraser L. R., p-Aminobenzamidine, an acrosin inhibitor, inhibits mouse sperm penetration of the zona pellucida but not the acrosome reaction. J. Reprod. Fertil. 65, 185–194 (1982). PubMed
Takano H., Yanagimachi R., Urch U. A., Evidence that acrosin activity is important for the development of fusibility of mammalian spermatozoa with the oolemma: Inhibitor studies using the golden hamster. Zygote 1, 79–91 (1993). PubMed
Kawano N., et al. , Mice lacking two sperm serine proteases, ACR and PRSS21, are subfertile, but the mutant sperm are infertile in vitro. Biol. Reprod. 83, 359–369 (2010). PubMed
Jedlicki A., Barros C., Scanning electron microscope study of in vitro prepenetration gamete interactions. Gamete Res. 11, 121–131 (1985).
Inoue N., Satouh Y., Ikawa M., Okabe M., Yanagimachi R., Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proc. Natl. Acad. Sci. U.S.A. 108, 20008–20011 (2011). PubMed PMC
Blanga-Kanfi S., et al. , Rodent phylogeny revised: Analysis of six nuclear genes from all major rodent clades. BMC Evol. Biol. 9, 71 (2009). PubMed PMC
Michaux J., Reyes A., Catzeflis F., Evolutionary history of the most speciose mammals: Molecular phylogeny of muroid rodents. Mol. Biol. Evol. 18, 2017–2031 (2001). PubMed
Nakanishi T., et al. , Real-time observation of acrosomal dispersal from mouse sperm using GFP as a marker protein. FEBS Lett. 449, 277–283 (1999). PubMed
Okabe M., Mechanisms of fertilization elucidated by gene-manipulated animals. Asian J. Androl. 17, 646–652 (2015). PubMed PMC
Ferrer M., et al. , MMP2 and acrosin are major proteinases associated with the inner acrosomal membrane and may cooperate in sperm penetration of the zona pellucida during fertilization. Cell Tissue Res. 349, 881–895 (2012). PubMed PMC
Tesarík J., Drahorád J., Pĕknicová J., Subcellular immunochemical localization of acrosin in human spermatozoa during the acrosome reaction and zona pellucida penetration. Fertil. Steril. 50, 133–141 (1988). PubMed
Yanagimachi R., Teichman R. J., Cytochemical demonstration of acrosomal proteinase in mammalian and avian spermatozoa by a silver proteinate method. Biol. Reprod. 6, 87–97 (1972). PubMed
Yunes R., Melendez J., Valdivia M., Barros C., Golden hamster perivitelline spermatozoa do not show proacrosin/acrosin at the inner acrosomal membrane. Biol. Res. 25, 91–93 (1992). PubMed
Hosseini S. H., Sadighi Gilani M. A., Meybodi A. M., Sabbaghian M., The impact of RABL2B gene (rs144944885) on human male infertility in patients with oligoasthenoteratozoospermia and immotile short tail sperm defects. J. Assist. Reprod. Genet. 34, 505–510 (2017). PubMed PMC
Honda A., Yamagata K., Sugiura S., Watanabe K., Baba T., A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J. Biol. Chem. 277, 16976–16984 (2002). PubMed
Bavister B. D., Yanagimachi R., The effects of sperm extracts and energy sources on the motility and acrosome reaction of hamster spermatozoa in vitro. Biol. Reprod. 16, 228–237 (1977). PubMed
Yanagida K., Yanagimachi R., Perreault S. D., Kleinfeld R. G., Thermostability of sperm nuclei assessed by microinjection into hamster oocytes. Biol. Reprod. 44, 440–447 (1991). PubMed
Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals