Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34489573
PubMed Central
PMC8437802
DOI
10.1038/s41556-021-00746-2
PII: 10.1038/s41556-021-00746-2
Knihovny.cz E-zdroje
- MeSH
- křečci praví MeSH
- křeček rodu Mesocricetus metabolismus MeSH
- malá interferující RNA genetika MeSH
- oocyty metabolismus patologie MeSH
- retroelementy fyziologie MeSH
- RNA-helikasy genetika MeSH
- spermatogeneze genetika fyziologie MeSH
- spermatogonie metabolismus patologie MeSH
- testis metabolismus MeSH
- umlčování genů fyziologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- malá interferující RNA MeSH
- retroelementy MeSH
- RNA-helikasy MeSH
PIWI-interacting RNAs (piRNAs) support the germline by suppressing retrotransposons. Studies of the pathway in mice have strongly shaped the view that mammalian piRNAs are essential for male but not for female fertility. Here, we report that the role of the piRNA pathway substantially differs in golden hamsters (Mesocricetus auratus), the piRNA pathway setup of which more closely resembles that of other mammals, including humans. The loss of the Mov10l1 RNA helicase-an essential piRNA biogenesis factor-leads to striking phenotypes in both sexes. In contrast to mice, female Mov10l1-/- hamsters are sterile because their oocytes do not sustain zygotic development. Furthermore, Mov10l1-/- male hamsters have impaired establishment of spermatogonia accompanied by transcriptome dysregulation and an expression surge of a young retrotransposon subfamily. Our results show that the mammalian piRNA pathway has essential roles in both sexes and its adaptive nature allows it to manage emerging genomic threats and acquire new critical roles in the germline.
Bioresource Engineering Division RIKEN BioResource Research Center Ibaraki Japan
Bioresource Engineering Laboratory RIKEN Cluster for Pioneering Research Saitama Japan
Institute of Experimental Medicine of the Czech Academy of Sciences Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Aravin AA, Hannon GJ, Brennecke J. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science. 2007;318:761–764. doi: 10.1126/science.1146484. PubMed DOI
Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, Zamore PD. PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet. 2019;20:89–108. doi: 10.1038/s41576-018-0073-3. PubMed DOI
Frost RJ, et al. MOV10L1 is necessary for protection of spermatocytes against retrotransposons by Piwi-interacting RNAs. Proc. Natl Acad. Sci. USA. 2010;107:11847–11852. doi: 10.1073/pnas.1007158107. PubMed DOI PMC
Zheng K, et al. Mouse MOV10L1 associates with Piwi proteins and is an essential component of the Piwi-interacting RNA (piRNA) pathway. Proc. Natl Acad. Sci. USA. 2010;107:11841–11846. doi: 10.1073/pnas.1003953107. PubMed DOI PMC
Vourekas A, et al. The RNA helicase MOV10L1 binds piRNA precursors to initiate piRNA processing. Genes Dev. 2015;29:617–629. doi: 10.1101/gad.254631.114. PubMed DOI PMC
Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, Hannon GJ. Developmentally regulated piRNA clusters implicate MILI in transposon control. Science. 2007;316:744–747. doi: 10.1126/science.1142612. PubMed DOI
Kuramochi-Miyagawa S, et al. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 2008;22:908–917. doi: 10.1101/gad.1640708. PubMed DOI PMC
Robine N, et al. A broadly conserved pathway generates 3′UTR-directed primary piRNAs. Curr. Biol. 2009;19:2066–2076. doi: 10.1016/j.cub.2009.11.064. PubMed DOI PMC
Chirn GW, et al. Conserved piRNA expression from a distinct Set of piRNA cluster loci in eutherian mammals. PLoS Genet. 2015;11:e1005652. doi: 10.1371/journal.pgen.1005652. PubMed DOI PMC
Yang Q, et al. Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun. 2019;10:3389. doi: 10.1038/s41467-019-11312-8. PubMed DOI PMC
Ishino K, et al. Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res. 2021;49:2700–2720. doi: 10.1093/nar/gkab059. PubMed DOI PMC
Meister G. Argonaute proteins: functional insights and emerging roles. Nat. Rev. Genet. 2013;14:447–459. doi: 10.1038/nrg3462. PubMed DOI
Kuramochi-Miyagawa S, et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development. 2004;131:839–849. doi: 10.1242/dev.00973. PubMed DOI
Deng W, Lin HF. miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell. 2002;2:819–830. doi: 10.1016/S1534-5807(02)00165-X. PubMed DOI
Carmell MA, et al. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell. 2007;12:503–514. doi: 10.1016/j.devcel.2007.03.001. PubMed DOI
Cheng EC, Kang D, Wang Z, Lin H. PIWI proteins are dispensable for mouse somatic development and reprogramming of fibroblasts into pluripotent stem cells. PLoS ONE. 2014;9:e97821. doi: 10.1371/journal.pone.0097821. PubMed DOI PMC
Lim AK, et al. The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development. 2013;140:3819–3825. doi: 10.1242/dev.099184. PubMed DOI PMC
Kabayama Y, et al. Roles of MIWI, MILI and PLD6 in small RNA regulation in mouse growing oocytes. Nucleic Acids Res. 2017;45:5387–5398. PubMed PMC
Taborska E, et al. Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLoS Genet. 2019;15:e1008261. doi: 10.1371/journal.pgen.1008261. PubMed DOI PMC
Flemr M, et al. A retrotransposon-driven Dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell. 2013;155:807–816. doi: 10.1016/j.cell.2013.10.001. PubMed DOI
Roovers EF, et al. Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep. 2015;10:2069–2082. doi: 10.1016/j.celrep.2015.02.062. PubMed DOI
Hirose M, et al. Acrosin is essential for sperm penetration through the zona pellucida in hamsters. Proc. Natl Acad. Sci. USA. 2020;117:2513–2518. doi: 10.1073/pnas.1917595117. PubMed DOI PMC
Steppan S, Adkins R, Anderson J. Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst. Biol. 2004;53:533–553. doi: 10.1080/10635150490468701. PubMed DOI
Seshagiri PB, McKenzie DI, Bavister BD, Williamson JL, Aiken JM. Golden hamster embryonic genome activation occurs at the two-cell stage: correlation with major developmental changes. Mol. Reprod. Dev. 1992;32:229–235. doi: 10.1002/mrd.1080320307. PubMed DOI
Hirose M, Ogura A. The golden (Syrian) hamster as a model for the study of reproductive biology: past, present, and future. Reprod. Med Biol. 2019;18:34–39. doi: 10.1002/rmb2.12241. PubMed DOI PMC
Abdel-Moneim AS, Abdelwhab EM. Evidence for SARS-CoV-2 infection of animal hosts. Pathogens. 2020;9:529. doi: 10.3390/pathogens9070529. PubMed DOI PMC
Franke V, et al. Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res. 2017;27:1384–1394. doi: 10.1101/gr.216150.116. PubMed DOI PMC
Miething A. The establishment of spermatogenesis in the seminiferous epithelium of the pubertal golden hamster (Mesocricetus auratus) Adv. Anat. Embryol. Cell Biol. 1998;140:1–92. doi: 10.1007/978-3-642-72005-5_1. PubMed DOI
Ribet D, et al. An infectious progenitor for the murine IAP retrotransposon: emergence of an intracellular genetic parasite from an ancient retrovirus. Genome Res. 2008;18:597–609. doi: 10.1101/gr.073486.107. PubMed DOI PMC
Magiorkinis G, Gifford RJ, Katzourakis A, De Ranter J, Belshaw R. Env-less endogenous retroviruses are genomic superspreaders. Proc. Natl Acad. Sci. USA. 2012;109:7385–7390. doi: 10.1073/pnas.1200913109. PubMed DOI PMC
Dewannieux M, Dupressoir A, Harper F, Pierron G, Heidmann T. Identification of autonomous IAP LTR retrotransposons mobile in mammalian cells. Nat. Genet. 2004;36:534–539. doi: 10.1038/ng1353. PubMed DOI
Ostertag EM, Kazazian HH., Jr. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 2001;35:501–538. doi: 10.1146/annurev.genet.35.102401.091032. PubMed DOI
Penzkofer T, et al. L1Base 2: more retrotransposition-active LINE-1s, more mammalian genomes. Nucleic Acids Res. 2017;45:D68–D73. doi: 10.1093/nar/gkw925. PubMed DOI PMC
Hasuwa, H. et al. Production of functional oocytes requires maternally expressed PIWI genes and piRNAs in golden hamsters. Nat. Cell Biol.10.1038/s41556-021-00745-3 (2021). PubMed
Gou LT, et al. Ubiquitination-deficient mutations in human Piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 2017;169:1090–1104. doi: 10.1016/j.cell.2017.04.034. PubMed DOI PMC
Svoboda, P., Franke, V. & Schultz, R. M. in Maternal-to-Zygotic Transition Vol. 113 (ed. Lipshitz, H. D.) 305–349 (2015).
Raz E. The function and regulation of vasa-like genes in germ-cell development. Genome Biol. 2000;1:reviews1017.1. doi: 10.1186/gb-2000-1-3-reviews1017. PubMed DOI PMC
Yuan L, et al. The murine SCP3 gene is required for synaptonemal complex assembly, chromosome synapsis, and male fertility. Mol. Cell. 2000;5:73–83. doi: 10.1016/S1097-2765(00)80404-9. PubMed DOI
Costoya JA, et al. Essential role of Plzf in maintenance of spermatogonial stem cells. Nat. Genet. 2004;36:653–659. doi: 10.1038/ng1367. PubMed DOI
Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev. Biol. 2006;294:161–167. doi: 10.1016/j.ydbio.2006.02.027. PubMed DOI
Gutti RK, Tsai-Morris CH, Dufau ML. Gonadotropin-regulated testicular helicase (DDX25), an essential regulator of spermatogenesis, prevents testicular germ cell apoptosis. J. Biol. Chem. 2008;283:17055–17064. doi: 10.1074/jbc.M708449200. PubMed DOI PMC
Li H, et al. DAZL is a master translational regulator of murine spermatogenesis. Natl Sci. Rev. 2019;6:455–468. doi: 10.1093/nsr/nwy163. PubMed DOI PMC
Di Giacomo M, Comazzetto S, Sampath SC, O’Carroll D. G9a co-suppresses LINE1 elements in spermatogonia. Epigenet. Chromatin. 2014;7:24. doi: 10.1186/1756-8935-7-24. PubMed DOI PMC
Zhang, H. et al. The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nat. Cell Biol.10.1038/s41556-021-00750-6 (2021). PubMed
Murchison EP, et al. Critical roles for Dicer in the female germline. Genes Dev. 2007;21:682–693. doi: 10.1101/gad.1521307. PubMed DOI PMC
Tang F, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21:644–648. doi: 10.1101/gad.418707. PubMed DOI PMC
De Fazio S, et al. The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature. 2011;480:259–263. doi: 10.1038/nature10547. PubMed DOI
Vasiliauskaite L, et al. Defective germline reprogramming rewires the spermatogonial transcriptome. Nat. Struct. Mol. Biol. 2018;25:394–404. doi: 10.1038/s41594-018-0058-0. PubMed DOI PMC
Watanabe T, Cui X, Yuan Z, Qi H, Lin H. MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J. 2018;37:e95329. doi: 10.15252/embj.201695329. PubMed DOI PMC
Di Giacomo M, et al. Multiple epigenetic mechanisms and the piRNA pathway enforce LINE1 silencing during adult spermatogenesis. Mol. Cell. 2013;50:601–608. doi: 10.1016/j.molcel.2013.04.026. PubMed DOI
Gurumurthy CB, et al. Creation of CRISPR-based germline-genome-engineered mice without ex vivo handling of zygotes by i-GONAD. Nat. Protoc. 2019;14:2452–2482. doi: 10.1038/s41596-019-0187-x. PubMed DOI
Shatzkes K, Teferedegne B, Murata H. A simple, inexpensive method for preparing cell lysates suitable for downstream reverse transcription quantitative PCR. Sci. Rep. 2014;4:4659. doi: 10.1038/srep04659. PubMed DOI PMC
Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36. doi: 10.1093/nar/30.9.e36. PubMed DOI PMC
Dobin A, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21. doi: 10.1093/bioinformatics/bts635. PubMed DOI PMC
Teissandier A, Servant N, Barillot E, Bourc’his D. Tools and best practices for retrotransposon analysis using high-throughput sequencing data. Mob. DNA. 2019;10:52. doi: 10.1186/s13100-019-0192-1. PubMed DOI PMC
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–930. doi: 10.1093/bioinformatics/btt656. PubMed DOI
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Graf A, et al. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl Acad. Sci. USA. 2014;111:4139–4144. doi: 10.1073/pnas.1321569111. PubMed DOI PMC
Gao Y, et al. Analysis of long non-coding RNA and mRNA expression profiling in immature and mature bovine (Bos taurus) testes. Front. Genet. 2019;10:646. doi: 10.3389/fgene.2019.00646. PubMed DOI PMC
Hendrickson PG, et al. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat. Genet. 2017;49:925–934. doi: 10.1038/ng.3844. PubMed DOI PMC
Jegou B, Sankararaman S, Rolland AD, Reich D, Chalmel F. Meiotic genes are enriched in regions of reduced archaic ancestry. Mol. Biol. Evol. 2017;34:1974–1980. doi: 10.1093/molbev/msx141. PubMed DOI PMC
Horvat F, et al. Role of Cnot6l in maternal mRNA turnover. Life Sci. Alliance. 2018;1:e201800084. doi: 10.26508/lsa.201800084. PubMed DOI PMC
Yue F, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515:355–364. doi: 10.1038/nature13992. PubMed DOI PMC
Ganesh S, et al. The most abundant maternal lncRNA Sirena1 acts post-transcriptionally and impacts mitochondrial distribution. Nucleic Acids Res. 2020;48:3211–3227. doi: 10.1093/nar/gkz1239. PubMed DOI PMC
Yu Y, et al. Comprehensive RNA-seq transcriptomic profiling across 11 organs, 4 ages, and 2 sexes of Fischer 344 rats. Sci. Data. 2014;1:140013. doi: 10.1038/sdata.2014.13. PubMed DOI PMC
Kent WJ, Zweig AS, Barber G, Hinrichs AS, Karolchik D. BigWig and BigBed: enabling browsing of large distributed datasets. Bioinformatics. 2010;26:2204–2207. doi: 10.1093/bioinformatics/btq351. PubMed DOI PMC
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J.17, 10–12 (2011).
Smith T, Heger A, Sudbery I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 2017;27:491–499. doi: 10.1101/gr.209601.116. PubMed DOI PMC
Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287. doi: 10.1089/omi.2011.0118. PubMed DOI PMC
Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–3647. doi: 10.1093/bioinformatics/btx469. PubMed DOI
Smit, A. F. A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (RepeatMasker, 2013–2015).
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for bisulfite-seq applications. Bioinformatics. 2011;27:1571–1572. doi: 10.1093/bioinformatics/btr167. PubMed DOI PMC
PIWI-interacting RNAs: who, what, when, where, why, and how