A comparative roadmap of PIWI-interacting RNAs across seven species reveals insights into de novo piRNA-precursor formation in mammals

. 2024 Oct 22 ; 43 (10) : 114777. [epub] 20240919

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie, Research Support, N.I.H., Intramural, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39302833

Grantová podpora
Wellcome Trust - United Kingdom
R01 AG078926 NIA NIH HHS - United States
R35 GM128619 NIGMS NIH HHS - United States
ZIA DK075111 Intramural NIH HHS - United States

Odkazy

PubMed 39302833
PubMed Central PMC11615739
DOI 10.1016/j.celrep.2024.114777
PII: S2211-1247(24)01128-8
Knihovny.cz E-zdroje

PIWI-interacting RNAs (piRNAs) play a crucial role in safeguarding genome integrity by silencing mobile genetic elements. From flies to humans, piRNAs originate from long single-stranded precursors encoded by genomic piRNA clusters. How piRNA clusters form to adapt to genomic invaders and evolve to maintain protection remain key outstanding questions. Here, we generate a roadmap of piRNA clusters across seven species that highlights both similarities and variations. In mammals, we identify transcriptional readthrough as a mechanism to generate piRNAs from transposon insertions (piCs) downstream of genes (DoG). Together with the well-known stress-dependent DoG transcripts, our findings suggest a molecular mechanism for the formation of piRNA clusters in response to retroviral invasion. Finally, we identify a class of dynamic piRNA clusters in humans, underscoring unique features of human germ cell biology. Our results advance the understanding of conserved principles and species-specific variations in piRNA biology and provide tools for future studies.

Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK; Wellcome CRUK Gurdon Institute University of Cambridge Tennis Court Road Cambridge CB2 1QN UK

Department of Molecular Cellular and Developmental Biology Yale University New Haven CT 06511 USA; Yale Stem Cell Center Yale School of Medicine New Haven CT 06511 USA; Center for RNA Science and Medicine Yale School of Medicine New Haven CT 06511 USA

Institute for Physical Science and Technology University of Maryland College Park MD 20742 USA; Department of Physics University of Maryland College Park MD 20742 USA

Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic

Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic; Bioinformatics Group Division of Molecular Biology Department of Biology Faculty of Science University of Zagreb 10000 Zagreb Croatia

National Institutes of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA

National Institutes of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA; Biophysics Graduate Program Institute for Physical Science and Technology University of Maryland College Park MD 20742 USA; Institute for Physical Science and Technology University of Maryland College Park MD 20742 USA; Department of Physics University of Maryland College Park MD 20742 USA

National Institutes of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA; Oak Ridge Institute for Science and Education US Department of Energy Oak Ridge TN USA

National Institutes of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA; Oak Ridge Institute for Science and Education US Department of Energy Oak Ridge TN USA; TriLab Bioinformatics Group National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD 20892 USA

National Institutes of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD USA; TriLab Bioinformatics Group National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health Bethesda MD 20892 USA

Zobrazit více v PubMed

Ozata DM, Gainetdinov I, Zoch A, O’Carroll D, and Zamore PD (2019). PIWI-interacting RNAs: small RNAs with big functions. Nat. Rev. Genet 20, 89–108. 10.1038/s41576-018-0073-3. PubMed DOI

Aravin AA, Hannon GJ, and Brennecke J (2007). The PIWI-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318, 761–764. 10.1126/science.1146484. PubMed DOI

Onishi R, Yamanaka S, and Siomi MC (2021). piRNA- and siRNA-mediated transcriptional repression in Drosophila, mice, and yeast: new insights and biodiversity. EMBO Rep. 22, e53062. 10.15252/embr.202153062. PubMed DOI PMC

Yamashiro H, and Siomi MC (2018). PIWI-Interacting RNA in Drosophila: Biogenesis, Transposon Regulation, and Beyond. Chem. Rev 118, 4404–421. 10.1021/acs.chemrev.7b00393. PubMed DOI

Cox DN, Chao A, Baker J, Chang L, Qiao D, and Lin H (1998). A novel class of evolutionarily conserved genes defined by PIWI are essential for stem cell self-renewal. Genes Dev. 12,3715–3727. 10.1101/gad.12.23.3715. PubMed DOI PMC

Wang C, and Lin H (2021). Roles of piRNAs in transposon and pseudogene regulation of germline mRNAs and lncRNAs. Genome Biol. 22, 27. 10.1186/s13059-020-02221-x. PubMed DOI PMC

Kazazian HH Jr., and Moran JV (2017). Mobile DNA in Health and Disease. N. Engl. J. Med 377, 361–370. 10.1056/NEJMra1510092. PubMed DOI PMC

Nagirnaja L, Mørup N, Nielsen JE, Stakaitis R, Golubickaite I, Oud MS, Winge SB, Carvalho F, Aston KI, Khani F, et al. (2021).Variant PNLDC1, Defective piRNA Processing, and Azoospermia. N. Engl. J. Med 385, 707–719. 10.1056/NEJMoa2028973. PubMed DOI PMC

Wang X, Ramat A, Simonelig M, and Liu MF (2023). Emerging roles and functional mechanisms of PIWI-interacting RNAs. Nat. Rev. Mol. Cell Biol 24, 123–141. 10.1038/s41580-022-00528-0. PubMed DOI

Czech B, Munafò M, Ciabrelli F, Eastwood EL, Fabry MH, Kneuss E, and Hannon GJ (2018). piRNA-Guided Genome Defense: From Biogenesis to Silencing. Annu. Rev. Genet 52, 131–157. 10.1146/annurev-genet-120417-031441. PubMed DOI PMC

Haase AD (2022). An introduction to PIWI-interacting RNAs (piRNAs) in the context of metazoan small RNA silencing pathways. RNA Biol. 19, 1094–1102. 10.1080/15476286.2022.2132359. PubMed DOI PMC

Levin HL, and Moran JV (2011). Dynamic interactions between transposable elements and their hosts. Nat. Rev. Genet 12, 615–627. 10.1038/nrg3030. PubMed DOI PMC

Aravin A, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P, lovino N, Morris P, Brownstein MJ, Kuramochi-Miyagawa S, Nakano T, et al. (2006).A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203–207. 10.1038/nature04916. PubMed DOI

Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R, and Hannon GJ (2007). Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128, 1089–1103. 10.1016/j.cell.2007.01.043. PubMed DOI

Girard A, Sachidanandam R, Hannon GJ, and Carmell MA (2006). A germline-specific class of small RNAs binds mammalian PIWI proteins. Nature 442, 199–202. 10.1038/nature04917. PubMed DOI

Houwing S, Kamminga LM, Berezikov E, Cronembold D, Girard A, van den Elst H, Filippov DV, Blaser H, Raz E, Moens CB, et al. (2007). A role for PIWI and piRNAs in germ cell maintenance and transposon silencing in Zebrafish. Cell 129, 69–82. 10.1016/j.cell.2007.03.026. PubMed DOI

Vagin VV, Sigova A, Li C, Seitz H, Gvozdev V, and Zamore PD (2006). A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313, 320–324. 10.1126/science.1129333. PubMed DOI

Grivna ST, Beyret E, Wang Z, and Lin H (2006). A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709–1714. 10.1101/gad.1434406. PubMed DOI PMC

Lau NC, Seto AG, Kim J, Kuramochi-Miyagawa S, Nakano T, Bartel DP, and Kingston RE (2006). Characterization of the piRNA complexfrom rattestes. Science 313, 363–367. 10.1126/science.1130164. PubMed DOI

Desset S, Meignin C, Dastugue B, and Vaury C (2003). COM, a heterochromatic locus governing the control of independent endogenous retroviruses from Drosophila melanogaster. Genetics 164, 501–509. 10.1093/genetics/164.2.501. PubMed DOI PMC

Pelisson A, Song SU, Prud’homme N, Smith PA, Bucheton A, and Corces VG (1994). Gypsy transposition correlates with the production of a retroviral envelope-like protein under the tissue-specific control of the Drosophila flamenco gene. EMBO J. 13, 4401–4411. 10.1002/j.1460-2075.1994.tb06760.x. PubMed DOI PMC

Yu T, Koppetsch BS, Pagliarani S, Johnston S, Silverstein NJ, Luban J, Chappell K, Weng Z, and Theurkauf WE (2019). The piRNA Response to Retroviral Invasion of the Koala Genome. Cell 179, 632–643.e12. 10.1016/j.cell.2019.09.002. PubMed DOI PMC

Srivastav S, Feschotte C, and Clark AG (2023). Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary. Preprint at bioRxiv. 10.1101/2023.05.08.539910. PubMed DOI PMC

Yamanaka S, Siomi MC, and Siomi H (2014). piRNA clusters and open chromatin structure. Mob. DNA 5, 22. 10.1186/1759-8753-5-22. PubMed DOI PMC

Wierzbicki F, and Kofler R (2023). The composition of piRNA clusters in Drosophila melanogaster deviates from expectations under the trap model. BMC Biol. 21,224. 10.1186/s12915-023-01727-7. PubMed DOI PMC

Assis R, and Kondrashov AS (2009). Rapid repetitive element-mediated expansion of piRNA clusters in mammalian evolution. Proc. Natl. Acad. Sci. USA 106, 7079–7082. 10.1073/pnas.0900523106. PubMed DOI PMC

Li XZ, Roy CK, Dong X, Bolcun-Filas E, Wang J, Han BW, Xu J, Moore MJ, Schimenti JC, Weng Z, and Zamore PD (2013). An ancient transcription factor initiates the burst of piRNA production during early meiosis in mouse testes. Mol. Cell 50, 67–81. 10.1016/j.molcel.2013.02.016. PubMed DOI PMC

Sarot E, Payen-Groschêne G, Bucheton A, and Pélisson A (2004). Evidence for a PiWi-dependent RNA silencing of the gypsy endogenous retrovirus by the Drosophila melanogaster flamenco gene. Genetics 166, 1313–1321. 10.1534/genetics.166.3.1313. PubMed DOI PMC

Adashev VE, Kotov AA, Bazylev SS, Shatskikh AS, Aravin AA, and Olenina LV (2020). Stellate Genes and the piRNA Pathway in Speciation and Reproductive Isolation of Drosophila melanogaster. Front. Genet 11,610665. 10.3389/fgene.2020.610665. PubMed DOI PMC

Choi H, Wang Z, and Dean J (2021). Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA. PLoS Genet. 17, e1009485. 10.1371/journal.pgen.1009485. PubMed DOI PMC

Wu PH, Fu Y, Cecchini K, Özata DM, Arif A, Yu T, Colpan C, Gainetdinov I, Weng Z, and Zamore PD (2020). The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility. Nat. Genet 52, 728–739. 10.1038/s41588-020-0657-7. PubMed DOI PMC

Gebert D, Neubert LK, Lloyd C, Gui J, Lehmann R, and Teixeira FK (2021). Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Mol. Cell 81, 3965–3978.e5. 10.1016/j.molcel.2021.07.011. PubMed DOI PMC

Loubalova Z, Konstantinidou P, and Haase AD (2023). Themes and variations on piRNA-guided transposon control. Mob. DNA 14, 10. 10.1186/s13100-023-00298-2. PubMed DOI PMC

Stein CB, Genzor P, Mitra S, Elchert AR, Ipsaro JJ, Benner L, Sobti S, Su Y, Hammell M, Joshua-Tor L, and Haase AD (2019). Decoding the 5’ nucleotide bias of PIWI-interacting RNAs. Nat. Commun 10, 828. 10.1038/s41467-019-08803-z. PubMed DOI PMC

Aravin AA, Sachidanandam R, Girard A, Fejes-Toth K, and Hannon GJ (2007). Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744–747. 10.1126/science.1142612. PubMed DOI

Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H, and Siomi MC (2007). A slicer-mediated mechanism for repeat-associated siRNA 5’ end formation in Drosophila. Science 315, 1587–1590. 10.1126/science.1140494. PubMed DOI

Han BW, Wang W, Zamore PD, and Weng Z (2015). piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing. Bioinformatics 31, 593–595. 10.1093/bioinformatics/btu647. PubMed DOI PMC

Genzor P, Konstantinidou P, Stoyko D, Manzourolajdad A, Marlin Andrews C, Elchert AR, Stathopoulos C, and Haase AD (2021). Cellular abundance shapes function in piRNA-guided genome defense. Genome Res. 31, 2058–2068. 10.1101/gr.275478.121. PubMed DOI PMC

Watanabe T, Cui X, Yuan Z, Qi H, and Lin H (2018). MIWI2 targets RNAs transcribed from piRNA-dependent regions to drive DNA methylation in mouse prospermatogonia. EMBO J. 37, e95329. 10.15252/embj.201695329. PubMed DOI PMC

Niki Y, Yamaguchi T, and Mahowald AP (2006). Establishment of stable cell lines of Drosophila germ-line stem cells. Proc. Natl. Acad. Sci. USA 103, 16325–16330. 10.1073/pnas.0607435103. PubMed DOI PMC

Saito K, Inagaki S, Mituyama T, Kawamura Y, Ono Y, Sakota E, Kotani H, Asai K, Siomi H, and Siomi MC (2009). A regulatory circuit for piwi by the large Maf gene traffic jam in Drosophila. Nature 461,1296–1299. 10.1038/nature08501. PubMed DOI

van Lopik J, Alizada A, Trapotsi MA, Hannon GJ, Bornelöv S, and Czech Nicholson B (2023). Unistrand piRNA clusters are an evolutionarily conserved mechanism to suppress endogenous retroviruses across the Drosophila genus. Nat. Commun 14, 7337. 10.1038/s41467-023-42787-1. PubMed DOI PMC

Malone CD, Brennecke J, Dus M, Stark A, McCombie WR, Sachidanandam R, and Hannon GJ (2009). Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137, 522–535. 10.1016/j.cell.2009.03.040. PubMed DOI PMC

Nishida KM, Okada TN, Kawamura T, Mituyama T, Kawamura Y, Inagaki S, Huang H, Chen D, Kodama T, Siomi H, and Siomi MC (2009). Functional involvement of Tudor and dPRMT5 in the piRNA processing pathway in Drosophila germlines. EMBO J. 28, 3820–3831. 10.1038/emboj.2009.365. PubMed DOI PMC

Deng W, and Lin H (2002). miwi, a murine homolog of piwi, encodes a cytoplasmic protein essential for spermatogenesis. Dev. Cell 2,819–830. 10.1016/s1534-5807(02)00165-x. PubMed DOI

Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, and Pillai RS (2011). Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing. Nature 480, 264–267. 10.1038/nature10672. PubMed DOI

Vourekas A, Zheng Q, Alexiou P, Maragkakis M, Kirino Y, Gregory BD, and Mourelatos Z (2012). Mili and Miwi target RNA repertoire reveals piRNA biogenesis and function of Miwi in spermiogenesis. Nat. Struct. Mol. Biol 19, 773–781. 10.1038/nsmb.2347. PubMed DOI PMC

Li XZ, Roy CK, Moore MJ, and Zamore PD (2013). Defining piRNA primary transcripts. Cell Cycle 12, 1657–1658. 10.4161/cc.24989. PubMed DOI

Yu T, Fan K, Özata DM, Zhang G, Fu Y, Theurkauf WE, Zamore PD, and Weng Z (2021). Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat. Commun 12, 73. 10.1038/s41467-020-20345-3. PubMed DOI PMC

Ozata DM, Yu T, Mou H, Gainetdinov I, Colpan C, Cecchini K, Kaymaz Y, Wu PH, Fan K, Kucukural A, et al. (2020). Evolutionarily conserved pachytene piRNA loci are highly divergent among modern humans. Nat Ecol Evol 4, 156–168. 10.1038/s41559-019-1065-1. PubMed DOI PMC

Gainetdinov I, Colpan C, Arif A, Cecchini K, and Zamore PD (2018). A Single Mechanism of Biogenesis, Initiated and Directed by PIWI Proteins, Explains piRNA Production in Most Animals. Mol. Cell 71, 775–790.e5. 10.1016/j.molcel.2018.08.007. PubMed DOI PMC

Palakodeti D, Smielewska M, Lu YC, Yeo GW, and Graveley BR (2008). The PIWI proteins SMEDWI-2 and SMEDWI-3 are required for stem cell function and piRNA expression in planarians. RNA 14, 1174–1186. 10.1261/rna.1085008. PubMed DOI PMC

Reddien PW, Oviedo NJ, Jennings JR, Jenkin JC, and Sánchez Alvarado A (2005). SMEDWI-2 is a PIWI-like protein that regulates planarian stem cells. Science 310, 1327–1330. 10.1126/science.1116110. PubMed DOI

Li D, Taylor DH, and van Wolfswinkel JC (2021). PIWI-mediated control of tissue-specific transposons is essential for somatic cell differentiation. Cell Rep. 37, 109776. 10.1016/j.celrep.2021.109776. PubMed DOI PMC

Salzburger W. (2018). Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet 19, 705–717. 10.1038/s41576-018-0043-9. PubMed DOI

Svardal H, Salzburger W, and Malinsky M (2021). Genetic Variation and Hybridization in Evolutionary Radiations of Cichlid Fishes. Annu. Rev. Anim. Biosci 9, 55–79. 10.1146/annurev-animal-061220-023129. PubMed DOI

Vernaz G, Hudson AG, Santos ME, Fischer B, Carruthers M, Shechonge AH, Gabagambi NP, Tyers AM, Ngatunga BP, Malinsky M, et al. (2022). Epigenetic divergence during early stages of speciation in an African crater lake cichlid fish. Nat. Ecol. Evol 6,1940–1951. 10.1038/s41559-022-01894-w. PubMed DOI PMC

Vernaz G, Malinsky M, Svardal H, Du M, Tyers AM, Santos ME, Durbin R, Genner MJ, Turner GF, and Miska EA (2021). Mapping epigenetic divergence in the massive radiation of Lake Malawi cichlid fishes. Nat. Commun 12, 5870. 10.1038/s41467-021-26166-2. PubMed DOI PMC

Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, Simakov O, Ng AY, Lim ZW, Bezault E, et al. (2014). The genomic substrate for adaptive radiation in African cichlid fish. Nature 513, 375–381. 10.1038/nature13726. PubMed DOI PMC

Almeida MV, Blumer M, Yuan CU, Sierra P, Price JL, Quah FX, Friman A, Dallaire A, Vernaz G, Putman ALK, et al. (2024). Dynamic co-evolution of transposable elements and the piRNA pathway in African cichlid fishes. Preprint at bioRxiv. 10.1101/2024.04.01.587621. DOI

Dorler D, Kropf M, Laaha G, and Zaller JG (2018). Occurrence of the invasive Spanish slug in gardens: can a citizen science approach help deciphering underlying factors? BMC Ecol. 18, 23. 10.1186/s12898-018-0179-7. PubMed DOI PMC

Liegertova M, Semeradtova A, Kocholata M, Prusova M, Nemcova L, Stofik M, Krizenecka S, Maly J, and Janouskova O (2022). Mucus-derived exosome-like vesicles from the Spanish slug (Arion vulgaris): taking advantage of invasive pest species in biotechnology. Sci. Rep 12,21768. 10.1038/s41598-022-26335-3. PubMed DOI PMC

Aravin AA, Sachidanandam R, Bourc’his D, Schaefer C, Pezic D, Toth KF, Bestor T, and Hannon GJ (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol. Cell 31, 785–799. 10.1016/j.molcel.2008.09.003. PubMed DOI PMC

Kluin PM, and de Rooij DG (1981). A comparison between the morphology and cell kinetics of gonocytes and adult type undifferentiated spermatogonia in the mouse. Int. J. Androl 4, 475–493. 10.1111/j.1365-2605.1981.tb00732.x. PubMed DOI

Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A, Ikawa M, Asada N, Kojima K, Yamaguchi Y, Ijiri TW, et al. (2008). DNA methylation of retrotransposon genes is regulated by piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22, 908–917. 10.1101/gad.1640708. PubMed DOI PMC

Pezic D, Manakov SA, Sachidanandam R, and Aravin AA (2014). piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 28, 1410–1428. 10.1101/gad.240895.114. PubMed DOI PMC

Yoshida S, Sukeno M, Nakagawa T, Ohbo K, Nagamatsu G, Suda T, and Nabeshima Y.i. (2006). The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133, 1495–1505. 10.1242/dev.02316. PubMed DOI

Yang F, Lan Y, Pandey RR, Homolka D, Berger SL, Pillai RS, Bartolomei MS, and Wang PJ (2020). TEX15 associates with MILI and silences transposable elements in male germ cells. Genes Dev. 34, 745–750. 10.1101/gad.335489.119. PubMed DOI PMC

Schopp T, Zoch A, Berrens RV, Auchynnikava T, Kabayama Y, Vasiliauskaite L, Rappsilber J, Allshire RC, and O’Carroll D (2020). TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing. Nat. Commun 11, 3739. 10.1038/s41467-020-17372-5. PubMed DOI PMC

Roth SJ, Heinz S, and Benner C (2020). ARTDeco: automatic readthrough transcription detection. BMC Bioinf. 21, 214. 10.1186/s12859-020-03551-0. PubMed DOI PMC

Heinz S, Texari L, Hayes MGB, Urbanowski M, Chang MW, Givarkes N, Rialdi A, White KM, Albrecht RA, Pache L, et al. (2018). Transcription Elongation Can Affect Genome 3D Structure. Cell 174, 1522–1536.e22. 10.1016/j.cell.2018.07.047. PubMed DOI PMC

Rosa-Mercado NA, and Steitz JA (2022). Who let the DoGs out? - biogenesis of stress-induced readthrough transcripts. Trends Biochem. Sci 47, 206–217. 10.1016/j.tibs.2021.08.003. PubMed DOI PMC

Vilborg A, Passarelli MC, Yario TA, Tycowski KT, and Steitz JA (2015). Widespread Inducible Transcription Downstream of Human Genes. Mol. Cell 59, 449–461. 10.1016/j.molcel.2015.06.016. PubMed DOI PMC

Grosso AR, Leite AP, Carvalho S, Matos MR, Martins FB, Vítor AC, Desterro JMP, Carmo-Fonseca M, and deAlmeida SF (2015). Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. Elife 4, e09214. 10.7554/eLife.09214. PubMed DOI PMC

Rutkowski AJ, Erhard F, L’Hernault A, Bonfert T, Schilhabel M, Crump C, Rosenstiel P, Efstathiou S, Zimmer R, Friedel CC, and Dolken L (2015). Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun 6, 7126. 10.1038/ncomms8126. PubMed DOI PMC

Bauer DLV, Tellier M, Martinez-Alonso M, Nojima T, Proudfoot NJ, Murphy S, and Fodor E (2018). Influenza Virus Mounts a Two-Pronged Attack on Host RNA Polymerase II Transcription. Cell Rep. 23, 2119–2129.e2113. 10.1016/j.celrep.2018.04.047. PubMed DOI PMC

Tian B, and Manley JL (2017). Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30. 10.1038/nrm.2016.116. PubMed DOI PMC

Morgan M, Shiekhattar R, Shilatifard A, and Lauberth SM (2022). It’s a DoG-eat-DoG world-altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol. Cell 82, 1981–1991. 10.1016/j.molcel.2022.04.008. PubMed DOI PMC

Vilborg A, Sabath N, Wiesel Y, Nathans J, Levy-Adam F, Yario TA, Steitz JA, and Shalgi R (2017). Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proc. Natl. Acad. Sci. USA 114, E8362–E8371. 10.1073/pnas.1711120114. PubMed DOI PMC

Lv X, Xiao W, Lai Y, Zhang Z, Zhang H, Qiu C, Hou L, Chen Q, Wang D, Gao Y, et al. (2023). The non-redundant functions of piwi family proteins in gametogenesis in golden hamsters. Nat. Commun 14, 5267. 10.1038/s41467-023-40650-x. PubMed DOI PMC

Ishino K, Hasuwa H, Yoshimura J, Iwasaki YW, Nishihara H, Seki NM, Hirano T, Tsuchiya M, Ishizaki H, Masuda H, et al. (2021). Hamster PIWI proteins bind to piRNAs with stage-specific size variations during oocyte maturation. Nucleic Acids Res. 49,2700–2720. 10.1093/nar/gkab059. PubMed DOI PMC

Loubalova Z, Fulka H, Horvat F, Pasulka J, Malik R, Hirose M, Ogura A, and Svoboda P (2021). Formation of spermatogonia and fertile oocytes in golden hamsters requires piRNAs. Nat. Cell Biol 23, 992–1001. 10.1038/s41556-021-00746-2. PubMed DOI PMC

Zhang H, Zhang F, Chen Q, Li M, Lv X, Xiao Y, Zhang Z, Hou L, Lai Y, Zhang Y, et al. (2021). The piRNA pathway is essential for generating functional oocytes in golden hamsters. Nat. Cell Biol 23, 1013–1022. 10.1038/s41556-021-00750-6. PubMed DOI

Yang Q, Li R, Lyu Q, Hou L, Liu Z, Sun Q, Liu M, Shi H, Xu B, Yin M, et al. (2019). Single-cell CAS-seq reveals a class of short PIWI-interacting RNAs in human oocytes. Nat. Commun 10, 3389. 10.1038/s41467-019-11312-8. PubMed DOI PMC

Bronkhorst AW, and Ketting RF (2018). Trimming it short: PNLDC1 is required for piRNA maturation during mouse spermatogenesis. EMBO Rep. 19, e45824. 10.15252/embr.201845824. PubMed DOI PMC

Stoyko D, Genzor P, and Haase AD (2022). Hierarchical length and sequence preferences establish a single major piRNA 3’-end. iScience 25, 104427. 10.1016/j.isci.2022.104427. PubMed DOI PMC

Roovers EF, Rosenkranz D, Mahdipour M, Han CT, He N, Chuva de Sousa Lopes SM, van der Westerlaken LAJ, Zischler H, Butter F, Roelen BAJ, and Ketting RF (2015). Piwi proteins and piRNAs in mammalian oocytes and early embryos. Cell Rep. 10, 2069–2082. 10.1016/j.celrep.2015.02.062. PubMed DOI

Sasaki T, Shiohama A, Minoshima S, and Shimizu N (2003). Identification of eight members of the Argonaute family in the human genome. Genomics 82, 323–330. 10.1016/s0888-7543(03)00129-0. PubMed DOI

Paniagua R, Codesal J, Nistal M, Rodríguez MC, and Santamaría L (1987). Quantification of cell types throughout the cycle of the human seminiferous epithelium and their DNA content. A new approach to the spermatogonial stem cell in man. Anat. Embryol 176, 225–230. 10.1007/BF00310055. PubMed DOI

Tan K, and Wilkinson MF (2019). Human Spermatogonial Stem Cells Scrutinized under the Single-Cell Magnifying Glass. Cell Stem Cell 24, 201–203. 10.1016/j.stem.2019.01.010. PubMed DOI PMC

Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, Gildersleeve H, Lehle JD, Mayo M, Westernströer B, et al. (2018). The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Rep. 25, 1650–1667.e8. 10.1016/j.celrep.2018.10.026. PubMed DOI PMC

Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, Guo Y, Takei Y, Yun J, Cai L, et al. (2018). The adult human testis transcriptional cell atlas. Cell Res. 28, 1141–1157. 10.1038/s41422-018-0099-2. PubMed DOI PMC

Wang M, Liu X, Chang G, Chen Y, An G, Yan L, Gao S, Xu Y, Cui Y, Dong J, et al. (2018). Single-Cell RNA Sequencing Analysis Reveals Sequential Cell Fate Transition during Human Spermatogenesis. Cell Stem Cell 23, 599–614.e4. 10.1016/j.stem.2018.08.007. PubMed DOI

Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. (2001). Initial sequencing and analysis of the human genome. Nature 409, 860–921. 10.1038/35057062. PubMed DOI

Yu T, Biasini A, Cecchini K, Saflund M, Mou H, Arif A, Eghbali A, de Rooij D, Weng Z, Zamore PD, and Ozata DM (2022). A-MYB/ TCFL5 regulatory architecture ensures the production of pachytene piRNAs in placental mammals. RNA 29, 30–43. 10.1261/rna.079472.122. PubMed DOI PMC

Zhou L, Canagarajah B, Zhao Y, Baibakov B, Tokuhiro K, Maric D, and Dean J (2017). BTBD18 Regulates a Subset of piRNA-Generating Loci through Transcription Elongation in Mice. Dev. Cell 40, 453–466.e5. 10.1016/j.devcel.2017.02.007. PubMed DOI

Srivastav SP, Feschotte C, and Clark AG (2024). Rapid evolution of piRNA clusters in the Drosophila melanogaster ovary. Genome Res. 34, 711–724. 10.1101/gr.278062.123. PubMed DOI PMC

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, and Gingeras TR (2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21. 10.1093/bioinformatics/bts635. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, and Durbin R; 1000 Genome Project Data Processing Subgroup (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352. PubMed DOI PMC

Martin M. (2011). Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J 17, 10–12. 10.14806/ej.17.1.200. DOI

Liao Y, Smyth GK, and Shi W (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930. 10.1093/bioinformatics/btt656. PubMed DOI

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, and Mesirov JP (2011). Integrative genomics viewer. Nat. Biotechnol 29, 24–26. 10.1038/nbt.1754. PubMed DOI PMC

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, and Pachter L (2010).Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol 28, 511–515. 10.1038/nbt.1621. PubMed DOI PMC

Antoniewski C. (2014). Computing siRNA and piRNA overlap signatures. Methods Mol. Biol 1173, 135–146. 10.1007/978-1-4939-0931-5_12. PubMed DOI

Ivankovic M, Brand JN, Pandolfini L, Brown T, Pippel M, Rozanski A, Schubert T, Grohme MA, Winkler S, Robledillo L, et al. (2023). A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Preprint at bioRxiv. 10.1101/2023.12.22.572568. PubMed DOI PMC

Chen Z, Doğan Ö, Guiglielmoni N, Guichard A, and Schrödl M (2022). Pulmonate slug evolution is reflected in the de novo genome of Arion vulgaris Moquin-Tandon, 1855. Sci. Rep 12, 14226. 10.1038/s41598-022-18099-7. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...