Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington's disease
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31278192
PubMed Central
PMC6679385
DOI
10.1242/dmm.038737
PII: dmm.038737
Knihovny.cz E-zdroje
- Klíčová slova
- Biomarkers, Disease development, HD large animal model, Huntington's disease, Mitochondrial function, Skeletal muscle, Ultrastructure,
- MeSH
- DNA metabolismus MeSH
- energetický metabolismus * MeSH
- geneticky modifikovaná zvířata MeSH
- Huntingtonova nemoc metabolismus patologie MeSH
- kosterní svaly metabolismus ultrastruktura MeSH
- lidé MeSH
- miniaturní prasata MeSH
- mitochondriální proteiny metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- mutace MeSH
- oxidativní fosforylace MeSH
- prasata MeSH
- progrese nemoci MeSH
- protein huntingtin genetika MeSH
- svalové mitochondrie metabolismus ultrastruktura MeSH
- tělesná hmotnost MeSH
- transport elektronů MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- HTT protein, human MeSH Prohlížeč
- mitochondriální proteiny MeSH
- protein huntingtin MeSH
Skeletal muscle wasting and atrophy is one of the more severe clinical impairments resulting from the progression of Huntington's disease (HD). Mitochondrial dysfunction may play a significant role in the etiology of HD, but the specific condition of mitochondria in muscle has not been widely studied during the development of HD. To determine the role of mitochondria in skeletal muscle during the early stages of HD, we analyzed quadriceps femoris muscle from 24-, 36-, 48- and 66-month-old transgenic minipigs that expressed the N-terminal portion of mutated human huntingtin protein (TgHD) and age-matched wild-type (WT) siblings. We found altered ultrastructure of TgHD muscle tissue and mitochondria. There was also significant reduction of activity of citrate synthase and respiratory chain complexes (RCCs) I, II and IV, decreased quantity of oligomycin-sensitivity conferring protein (OSCP) and the E2 subunit of pyruvate dehydrogenase (PDHE2), and differential expression of optic atrophy 1 protein (OPA1) and dynamin-related protein 1 (DRP1) in the skeletal muscle of TgHD minipigs. Statistical analysis identified several parameters that were dependent only on HD status and could therefore be used as potential biomarkers of disease progression. In particular, the reduction of biomarker RCCII subunit SDH30 quantity suggests that similar pathogenic mechanisms underlie disease progression in TgHD minipigs and HD patients. The perturbed biochemical phenotype was detectable in TgHD minipigs prior to the development of ultrastructural changes and locomotor impairment, which become evident at the age of 48 months. Mitochondrial disturbances may contribute to energetic depression in skeletal muscle in HD, which is in concordance with the mobility problems observed in this model.This article has an associated First Person interview with the first author of the paper.
Zobrazit více v PubMed
Antoniel M., Giorgio V., Fogolari F., Glick G. D., Bernardi P. and Lippe G. (2014). The oligomycin-sensitivity conferring protein of mitochondrial ATP synthase: emerging new roles in mitochondrial pathophysiology. Int. J. Mol. Sci. 15, 7513-7536. 10.3390/ijms15057513 PubMed DOI PMC
Arenas J., Campos Y., Ribacoba R., Martín M. A., Rubio J. C., Ablanedo P. and Cabello A. (1998). Complex I defect in muscle from patients with Huntington's disease. Ann. Neurol. 43, 397-400. 10.1002/ana.410430321 PubMed DOI
Askeland G., Dosoudilova Z., Rodinova M., Klempir J., Liskova I., Kuśnierczyk A., Bjørås M., Nesse G., Klungland A., Hansikova H. et al. (2018a). Increased nuclear DNA damage precedes mitochondrial dysfunction in peripheral blood mononuclear cells from Huntington's disease patients. Sci. Rep. 8, 9817 10.1038/s41598-018-27985-y PubMed DOI PMC
Askeland G., Rodinova M., Štufková H., Dosoudilova Z., Baxa M., Smatlikova P., Bohuslavova B., Klempir J., Nguyen T. D., Kuśnierczyk A. et al. (2018b). A transgenic minipig model of Huntington's disease shows early signs of behavioral and molecular pathologies. Dis. Model. Mech. 11, dmm035949 10.1242/dmm.035949 PubMed DOI PMC
Baldwin K. M., Hooker A. M. and Herrick R. E. (1978). Lactate oxidative capacity in different types of muscle. Biochem. Biophys. Res. Commun. 83, 151-157. 10.1016/0006-291X(78)90410-2 PubMed DOI
Banoei M. M., Houshmand M., Panahi M. S. S., Shariati P., Rostami M., Manshadi M. D. and Majidizadeh T. (2007). Huntington's disease and mitochondrial DNA deletions: event or regular mechanism for mutant huntingtin protein and CAG repeats expansion?! Cell. Mol. Neurobiol. 27, 867-875. 10.1007/s10571-007-9206-5 PubMed DOI
Baxa M., Hruska-Plochan M., Juhas S., Vodicka P., Pavlok A., Juhasova J., Miyanohara A., Nejime T., Klima J., Macakova M. et al. (2013). A transgenic minipig model of Huntington's Disease. J. Huntingtons Dis. 2, 47-68. 10.3233/JHD-130001 PubMed DOI
Beck S. J., Guo L., Phensy A., Tian J., Wang L., Tandon N., Gauba E., Lu L., Pascual J. M., Kroener S. et al. (2016). Deregulation of mitochondrial F1FO-ATP synthase via OSCP in Alzheimer's disease. Nat. Commun. 7, 11483 10.1038/ncomms11483 PubMed DOI PMC
Benchoua A., Trioulier Y., Zala D., Gaillard M.-C., Lefort N., Dufour N., Saudou F., Elalouf J.-M., Hirsch E., Hantraye P. et al. (2006). Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol. Biol. Cell 17, 1652-1663. 10.1091/mbc.e05-07-0607 PubMed DOI PMC
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Buck E., Zügel M., Schumann U., Merz T., Gumpp A. M., Witting A., Steinacker J. M., Landwehrmeyer G. B., Weydt P., Calzia E. et al. (2017). High-resolution respirometry of fine-needle muscle biopsies in pre-manifest Huntington's disease expansion mutation carriers shows normal mitochondrial respiratory function. PLoS ONE 12, e0175248 10.1371/journal.pone.0175248 PubMed DOI PMC
Busse M. E., Hughes G., Wiles C. M. and Rosser A. E. (2008). Use of hand-held dynamometry in the evaluation of lower limb muscle strength in people with Huntington's disease. J. Neurol. 255, 1534-1540. 10.1007/s00415-008-0964-x PubMed DOI
Cahova M., Chrastina P., Hansikova H., Drahota Z., Trnovska J., Skop V., Spacilova J., Malinska H., Oliyarnyk O., Papackova Z. et al. (2015). Carnitine supplementation alleviates lipid metabolism derangements and protects against oxidative stress in non-obese hereditary hypertriglyceridemic rats. Appl. Physiol. Nutr. Metab. 40, 280-291. 10.1139/apnm-2014-0163 PubMed DOI
Carroll J. B., Bates G. P., Steffan J., Saft C. and Tabrizi S. J. (2015). Treating the whole body in Huntington's disease. Lancet Neurol. 14, 1135-1142. 10.1016/S1474-4422(15)00177-5 PubMed DOI
Cherubini M. and Ginés S. (2017). Mitochondrial fragmentation in neuronal degeneration: toward an understanding of HD striatal susceptibility. Biochem. Biophys. Res. Commun. 483, 1063-1068. 10.1016/j.bbrc.2016.08.042 PubMed DOI
Ciammola A., Sassone J., Alberti L., Meola G., Mancinelli E., Russo M. A., Squitieri F. and Silani V. (2006). Increased apoptosis, Huntingtin inclusions and altered differentiation in muscle cell cultures from Huntington's disease subjects. Cell Death Differ. 13, 2068-2078. 10.1038/sj.cdd.4401967 PubMed DOI
Ciammola A., Sassone J., Sciacco M., Mencacci N. E., Ripolone M., Bizzi C., Colciago C., Moggio M., Parati G., Silani V. et al. (2011). Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington's disease. Mov. Disord. 26, 130-137. 10.1002/mds.23258 PubMed DOI PMC
Fornuskova D., Stiburek L., Wenchich L., Vinsova K., Hansikova H. and Zeman J. (2010). Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem. J. 428, 363-374. 10.1042/BJ20091714 PubMed DOI
Gao J., Wang L., Liu J., Xie F., Su B. and Wang X. (2017). Abnormalities of mitochondrial dynamics in neurodegenerative diseases. Antioxidants 6, 25 10.3390/antiox6020025 PubMed DOI PMC
Gizatullina Z. Z., Lindenberg K. S., Harjes P., Chen Y., Kosinski C. M., Landwehrmeyer B. G., Ludolph A. C., Striggow F., Zierz S. and Gellerich F. N. (2006). Low stability of Huntington muscle mitochondria against Ca2+ in R6/2 mice. Ann. Neurol. 59, 407-411. 10.1002/ana.20754 PubMed DOI
Hering T., Kojer K., Birth N., Hallitsch J., Taanman J.-W. and Orth M. (2017). Mitochondrial cristae remodelling is associated with disrupted OPA1 oligomerisation in the Huntington's disease R6/2 fragment model. Exp. Neurol. 288, 167-175. 10.1016/j.expneurol.2016.10.017 PubMed DOI
Horton T. M., Graham B. H., Corral-Debrinski M., Shoffner J. M., Kaufman A. E., Beal M. F. and Wallace D. C. (1995). Marked increase in mitochondrial DNA deletion levels in the cerebral cortex of Huntington's disease patients. Neurology 45, 1879-1883. 10.1212/WNL.45.10.1879 PubMed DOI
Hu C., Huang Y. and Li L. (2017). Drp1-dependent mitochondrial fission plays critical roles in physiological and pathological progresses in mammals. Int. J. Mol. Sci. 18, 144 10.3390/ijms18010144 PubMed DOI PMC
Janssen A. J. M., Trijbels F. J., Sengers R. C., Wintjes L. T., Ruitenbeek W., Smeitink J. A., Morava E., van Engelen B. G., van den Heuvel L. P. and Rodenburg R. J. (2006). Measurement of the energy-generating capacity of human muscle mitochondria: diagnostic procedure and application to human pathology. Clin. Chem. 52, 860-871. 10.1373/clinchem.2005.062414 PubMed DOI
Kosinski C. M., Schlangen C., Gellerich F. N., Gizatullina Z., Deschauer M., Schiefer J., Young A. B., Landwehrmeyer G. B., Toyka K. V., Sellhaus B. et al. (2007). Myopathy as a first symptom of Huntington's disease in a Marathon runner. Mov. Disord. 22, 1637-1640. 10.1002/mds.21550 PubMed DOI
Kremer B., Goldberg P., Andrew S. E., Theilmann J., Telenius H., Zeisler J., Squitieri F., Lin B., Bassett A., Almqvist E. et al. (1994). A worldwide study of the Huntington's disease mutation. The sensitivity and specificity of measuring CAG repeats. N. Engl. J. Med. 330, 1401-1406. 10.1056/NEJM199405193302001 PubMed DOI
Krizova J., Stufkova H., Rodinova M., Macakova M., Bohuslavova B., Vidinska D., Klima J., Ellederova Z., Pavlok A., Howland D. S. et al. (2017). Mitochondrial metabolism in a large-animal model of huntington disease: the hunt for biomarkers in the spermatozoa of presymptomatic minipigs. Neurodegener. Dis. 17, 213-226. 10.1159/000475467 PubMed DOI
Kuznetsov A. V., Veksler V., Gellerich F. N., Saks V., Margreiter R. and Kunz W. S. (2008). Analysis of mitochondrial function in situ in permeabilized muscle fibers, tissues and cells. Nat. Protoc. 3, 965-976. 10.1038/nprot.2008.61 PubMed DOI
Liu C.-S., Cheng W.-L., Kuo S.-J., Li J.-Y., Soong B.-W. and Wei Y.-H. (2008). Depletion of mitochondrial DNA in leukocytes of patients with poly-Q diseases. J. Neurol. Sci. 264, 18-21. 10.1016/j.jns.2007.07.016 PubMed DOI
Lodi R., Schapira A. H. V., Manners D., Styles P., Wood N. W., Taylor D. J. and Warner T. T. (2000). Abnormal in vivo skeletal muscle energy metabolism in Huntington's disease and dentatorubropallidoluysian atrophy. Ann. Neurol. 48, 72-76. 10.1002/1531-8249(200007)48:1<72::AID-ANA11>3.0.CO;2-I PubMed DOI
Lowry O. H., Rosebrough N. J., Farr A. L. and Randall R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275. PubMed
Lund J., Aas V., Tingstad R. H., van Hees A. and Nikolić N. (2018). Utilization of lactic acid in human myotubes and interplay with glucose and fatty acid metabolism. Sci. Rep. 8, 9814 10.1038/s41598-018-28249-5 PubMed DOI PMC
Macakova M., Bohuslavova B., Vochozkova P., Pavlok A., Sedlackova M., Vidinska D., Vochyanova K., Liskova I., Valekova I., Baxa M. et al. (2016). Mutated Huntingtin causes testicular pathology in transgenic minipig boars. Neurodegener. Dis. 16, 245-259. 10.1159/000443665 PubMed DOI
Mantovani S., Gordon R., Li R., Christie D. C., Kumar V. and Woodruff T. M. (2016). Motor deficits associated with Huntington's disease occur in the absence of striatal degeneration in BACHD transgenic mice. Hum. Mol. Genet. 25, 1780-1791. 10.1093/hmg/ddw050 PubMed DOI
Mielcarek M., Toczek M., Smeets C. J. L. M., Franklin S. A., Bondulich M. K., Jolinon N., Muller T., Ahmed M., Dick J. R. T., Piotrowska I. et al. (2015). HDAC4-myogenin axis as an important marker of HD-related skeletal muscle atrophy. PLoS Genet. 11, e1005021 10.1371/journal.pgen.1005021 PubMed DOI PMC
Mosca F., Fattorini D., Bompadre S. and Littarru G. P. (2002). Assay of coenzyme Q(10) in plasma by a single dilution step. Anal. Biochem. 305, 49-54. 10.1006/abio.2002.5653 PubMed DOI
Munsie L., Caron N., Atwal R. S., Marsden I., Wild E. J., Bamburg J. R., Tabrizi S. J. and Truant R. (2011). Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease. Hum. Mol. Genet. 20, 1937-1951. 10.1093/hmg/ddr075 PubMed DOI PMC
Novak M. J. U. and Tabrizi S. J. (2010). Huntington's disease. BMJ 340, c3109 10.1136/bmj.c3109 PubMed DOI
Pandey M., Varghese M., Sindhu K. M., Sreetama S., Navneet A. K., Mohanakumar K. P. and Usha R. (2008). Mitochondrial NAD+-linked State 3 respiration and complex-I activity are compromised in the cerebral cortex of 3-nitropropionic acid-induced rat model of Huntington's disease. J. Neurochem. 104, 420-434. 10.1111/j.1471-4159.2007.04996.x PubMed DOI
Panov A. V., Gutekunst C.-A., Leavitt B. R., Hayden M. R., Burke J. R., Strittmatter W. J. and Greenamyre J. T. (2002). Early mitochondrial calcium defects in Huntington's disease are a direct effect of polyglutamines. Nat. Neurosci. 5, 731-736. 10.1038/nn884 PubMed DOI
Petersen M. H., Budtz-Jørgensen E., Sørensen S. A., Nielsen J. E., Hjermind L. E., Vinther-Jensen T., Nielsen S. M. B. and Nørremølle A. (2014). Reduction in mitochondrial DNA copy number in peripheral leukocytes after onset of Huntington's disease. Mitochondrion 17, 14-21. 10.1016/j.mito.2014.05.001 PubMed DOI
Quintanilla R. A., Jin Y. N., von Bernhardi R. and Johnson G. V. W. (2013). Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease. Mol. Neurodegener. 8, 45 10.1186/1750-1326-8-45 PubMed DOI PMC
Reddy P. H. (2014). Increased mitochondrial fission and neuronal dysfunction in Huntington's disease: implications for molecular inhibitors of excessive mitochondrial fission. Drug Discov. Today 19, 951-955. 10.1016/j.drudis.2014.03.020 PubMed DOI PMC
Roe A. J. and Qi X. (2018). Drp1 phosphorylation by MAPK1 causes mitochondrial dysfunction in cell culture model of Huntington's disease. Biochem. Biophys. Res. Commun. 496, 706-711. 10.1016/j.bbrc.2018.01.114 PubMed DOI PMC
Romanello V., Guadagnin E., Gomes L., Roder I., Sandri C., Petersen Y., Milan G., Masiero E., DEL Piccolo P., Foretz M. et al. (2010). Mitochondrial fission and remodelling contributes to muscle atrophy. EMBO J. 29, 1774-1785. 10.1038/emboj.2010.60 PubMed DOI PMC
Rötig A., de Lonlay P., Chretien D., Foury F., Koenig M., Sidi D., Munnich A. and Rustin P. (1997). Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17, 215-217. 10.1038/ng1097-215 PubMed DOI
Rustin P., Chretien D., Bourgeron T., Gérard B., Rötig A., Saudubray J. M. and Munnich A. (1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clin. Chim. Acta 228, 35-51. 10.1016/0009-8981(94)90055-8 PubMed DOI
Rustin P., Munnich A. and Rötig A. (2002). Succinate dehydrogenase and human diseases: new insights into a well-known enzyme. Eur. J. Hum. Genet. 10, 289-291. 10.1038/sj.ejhg.5200793 PubMed DOI
Schägger H. and von Jagow G. (1991). Blue native electrophoresis for isolation of membrane protein complexes in enzymatically active form. Anal. Biochem. 199, 223-231. 10.1016/0003-2697(91)90094-A PubMed DOI
She P., Zhang Z., Marchionini D., Diaz W. C., Jetton T. J., Kimball S. R., Vary T. C., Lang C. H. and Lynch C. J. (2011). Molecular characterization of skeletal muscle atrophy in the R6/2 mouse model of Huntington's disease. Am. J. Physiol. Endocrinol. Metab. 301, E49-E61. 10.1152/ajpendo.00630.2010 PubMed DOI PMC
Silva A. C., Almeida S., Laço M., Duarte A. I., Domingues J., Oliveira C. R., Januário C. and Rego A. C. (2013). Mitochondrial respiratory chain complex activity and bioenergetic alterations in human platelets derived from pre-symptomatic and symptomatic Huntington's disease carriers. Mitochondrion 13, 801-809. 10.1016/j.mito.2013.05.006 PubMed DOI
Squitieri F., Falleni A., Cannella M., Orobello S., Fulceri F., Lenzi P. and Fornai F. (2010). Abnormal morphology of peripheral cell tissues from patients with Huntington disease. J Neural Transm (Vienna) 117, 77-83. 10.1007/s00702-009-0328-4 PubMed DOI
Srere D. (1969). [1] Citrate synthase. [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzymol. 13(C), 3-11. 10.1016/0076-6879(69)13005-0 DOI
Tabrizi S. J., Workman J., Hart P. E., Mangiarini L., Mahal A., Bates G., Cooper J. M. and Schapira A. H. V. (2000). Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann. Neurol. 47, 80-86. 10.1002/1531-8249(200001)47:1<80::AID-ANA13>3.0.CO;2-K PubMed DOI
Trottier Y., Devys D., Imbert G., Saudou F., An I., Lutz Y., Weber C., Agid Y., Hirsch E. C. and Mandel J.-L. (1995). Cellular localization of the Huntington's disease protein and discrimination of the normal and mutated form. Nat. Genet. 10, 104-110. 10.1038/ng0595-104 PubMed DOI
Tyler D. D. (1992). The Mitochondrion in Health and Disease. VCH Publishers: Weinheim, New York.
Valadão P. A. C., de Aragão B. C., Andrade J. N., Magalhães-Gomes M. P. S., Foureaux G., Joviano-Santos J. V., Nogueira J. C., Ribeiro F. M., Tapia J. C. and Guatimosim C. (2017). Muscle atrophy is associated with cervical spinal motoneuron loss in BACHD mouse model for Huntington's disease. Eur. J. Neurosci. 45, 785-796. 10.1111/ejn.13510 PubMed DOI
van der Burg J. M. M., Björkqvist M. and Brundin P. (2009). Beyond the brain: widespread pathology in Huntington's disease. Lancet Neurol. 8, 765-774. 10.1016/S1474-4422(09)70178-4 PubMed DOI
Vidinská D., Vochozková P., Šmatlíková P., Ardan T., Klíma J., Juhás S., Juhásová J., Bohuslavová B., Baxa M., Valeková I. et al. (2018). Gradual phenotype development in Huntington disease transgenic minipig model at 24 months of age. Neurodegener. Dis. 18, 107-119. 10.1159/000488592 PubMed DOI
Vonsattel J. P. G. and Difiglia M. (1998). Huntington disease. J. Neuropathol. Exp. Neurol. 57, 369-384. 10.1097/00005072-199805000-00001 PubMed DOI
Wang W., Scheffler K., Esbensen Y. and Eide L. (2016). Quantification of DNA damage by real-time qPCR. Methods Mol. Biol. 1351, 27-32. 10.1007/978-1-4939-3040-1_3 PubMed DOI
Zielonka D., Piotrowska I., Marcinkowski J. T. and Mielcarek M. (2014). Skeletal muscle pathology in Huntington's disease. Front. Physiol. 5, 380 10.3389/fphys.2014.00380 PubMed DOI PMC
Mitochondrial Dysfunction in a High Intraocular Pressure-Induced Retinal Ischemia Minipig Model
Large Animal Models of Huntington's Disease: What We Have Learned and Where We Need to Go Next
Transgenic minipig model of Huntington's disease exhibiting gradually progressing neurodegeneration