Mitochondrial Dysfunction in a High Intraocular Pressure-Induced Retinal Ischemia Minipig Model

. 2022 Oct 21 ; 12 (10) : . [epub] 20221021

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36291741

Purpose: Retinal ischemia (RI) and progressive neuronal death are sight-threatening conditions. Mitochondrial (mt) dysfunction and fusion/fission processes have been suggested to play a role in the pathophysiology of RI. This study focuses on changes in the mt parameters of the neuroretina, retinal pigment epithelium (RPE) and choroid in a porcine high intraocular pressure (IOP)-induced RI minipig model. Methods: In one eye, an acute IOP elevation was induced in minipigs and compared to the other control eye. Activity and amount of respiratory chain complexes (RCC) were analyzed by spectrophotometry and Western blot, respectively. The coenzyme Q10 (CoQ10) content was measured using HPLC, and the ultrastructure of the mt was studied via transmission electron microscopy. The expression of selected mt-pathway genes was determined by RT-PCR. Results: At a functional level, increased RCC I activity and decreased total CoQ10 content were found in RPE cells. At a protein level, CORE2, a subunit of RCC III, and DRP1, was significantly decreased in the neuroretina. Drp1 and Opa1, protein-encoding genes responsible for mt quality control, were decreased in most of the samples from the RPE and neuroretina. Conclusions: The eyes of the minipig can be considered a potential RI model to study mt dysfunction in this disease. Strategies targeting mt protection may provide a promising way to delay the acute damage and onset of RI.

Zobrazit více v PubMed

Begg I.S., Drance S.M. Progress of the glaucomatous process related to recurrent ischaemic changes at the optic disc. Exp. Eye Res. 1971;11:141. doi: 10.1016/s0014-4835(71)80081-7. PubMed DOI

Quigley H.A. Ganglion cell death in glaucoma: Pathology recapitulates ontogeny. Aust. N. Z. J. Ophthalmol. 1995;23:85–91. doi: 10.1111/j.1442-9071.1995.tb00135.x. PubMed DOI

Grozdanic S.D., Sakaguchi D.S., Kwon Y.H., Kardon R.H., Sonea I.M. Functional characterization of retina and optic nerve after acute ocular ischemia in rats. Investig. Ophthalmol. Vis. Sci. 2003;44:2597–2605. doi: 10.1167/iovs.02-0600. PubMed DOI

Morrison J.C. Elevated intraocular pressure and optic nerve injury models in the rat. J. Glaucoma. 2005;14:315–317. doi: 10.1097/01.ijg.0000169410.09258.bf. PubMed DOI

Adachi M., Takahashi K., Nishikawa M., Miki H., Uyama M. High intraocular pressure-induced ischemia and reperfusion injury in the optic nerve and retina in rats. Graefe’s Arch. Clin. Exp. Ophthalmol. 1996;234:445–451. doi: 10.1007/BF02539411. PubMed DOI

Adachi M., Takahashi K., Yuge K., Nishikawa M., Miki H., Uyama M. Treatment with bifemelane for optic nerve damage following high intraocular pressure in rat eyes. Eur. J. Ophthalmol. 1996;6:415–420. doi: 10.1177/112067219600600413. PubMed DOI

He Y., Ge J., Tombran-Tink J. Mitochondrial defects and dysfunction in calcium regulation in glaucomatous trabecular meshwork cells. Investig. Ophthalmol. Vis. Sci. 2008;49:4912–4922. doi: 10.1167/iovs.08-2192. PubMed DOI

Wang J., Qu H., Tan J. A histological study on peripheral iris in primary angle closure glaucoma. Yan Ke Xue Bao. 1993;9:106–109. PubMed

McElnea E.M., Quill B., Docherty N.G., Irnaten M., Siah W.F., Clark A.F., O’Brien C.J., Wallace D.M. Oxidative stress, mitochondrial dysfunction and calcium overload in human lamina cribrosa cells from glaucoma donors. Mol. Vis. 2011;17:1182–1191. PubMed PMC

Ju W.K., Kim K.Y., Lindsey J.D., Angert M., Duong-Polk K.X., Scott R.T., Kim J.J., Kukhmazov I., Ellisman M.H., Perkins G.A., et al. Intraocular pressure elevation induces mitochondrial fission and triggers OPA1 release in glaucomatous optic nerve. Invest Ophthalmol Vis. Sci. 2008;49:4903–4911. doi: 10.1167/iovs.07-1661. PubMed DOI PMC

Tezel G. Oxidative stress in glaucomatous neurodegeneration: Mechanisms and consequences. Prog. Retin. Eye Res. 2006;25:490–513. doi: 10.1016/j.preteyeres.2006.07.003. PubMed DOI PMC

Wang A.Y.M., Wong V.H.Y., Lee P.Y., Bui B.V., Dudczig S., Vessey K.A., Fletcher E.L. Retinal ganglion cell dysfunction in mice following acute intraocular pressure is exacerbated by P2X7 receptor knockout. Sci. Rep. 2021;11:4184. doi: 10.1038/s41598-021-83669-0. PubMed DOI PMC

Liu H., Liu H., Prokosch V. The Relationship between Mitochondria and Neurodegeration in the Eye: A Review. Appl. Sci. 2021;11:7385. doi: 10.3390/app11167385. DOI

Brantova O., Tesarova M., Hansikova H., Elleder M., Zeman J., Sladkova J. Ultrastructural changes of mitochondria in the cultivated skin fibroblasts of patients with point mutations in mitochondrial DNA. Ultrastruct. Pathol. 2006;30:239–245. doi: 10.1080/01913120600820112. PubMed DOI

Rodinova M., Krizova J., Stufkova H., Bohuslavova B., Askeland G., Dosoudilova Z., Juhas S., Juhasova J., Ellederova Z., Zeman J., et al. Deterioration of mitochondrial bioenergetics and ultrastructure impairment in skeletal muscle of a transgenic minipig model in the early stages of Huntington’s disease. Dis. Model. Mech. 2019;12:dmm038737. doi: 10.1242/dmm.038737. PubMed DOI PMC

Mosca F., Fattorini D., Bompadre S., Littarru G.P. Assay of coenzyme Q(10) in plasma by a single dilution step. Anal. Biochem. 2002;305:49–54. doi: 10.1006/abio.2002.5653. PubMed DOI

Fornuskova D., Stiburek L., Wenchich L., Vinsova K., Hansikova H., Zeman J. Novel insights into the assembly and function of human nuclear-encoded cytochrome c oxidase subunits 4, 5a, 6a, 7a and 7b. Biochem. J. 2010;428:363–374. doi: 10.1042/BJ20091714. PubMed DOI

Stiburek L., Vesela K., Hansikova H., Pecina P., Tesarova M., Cerna L., Houstek J., Zeman J. Tissue-specific cytochrome c oxidase assembly defects due to mutations in SCO2 and SURF1. Biochem. J. 2005;392:625–632. doi: 10.1042/BJ20050807. PubMed DOI PMC

Liu H., Prokosch V. Energy Metabolism in the Inner Retina in Health and Glaucoma. Int. J. Mol. Sci. 2021;22:3689. doi: 10.3390/ijms22073689. PubMed DOI PMC

Nguyen H., Lee J.Y., Sanberg P.R., Napoli E., Borlongan C.V. Eye Opener in Stroke. Stroke. 2019;50:2197–2206. doi: 10.1161/STROKEAHA.119.025249. PubMed DOI PMC

Drose S., Stepanova A., Galkin A. Ischemic A/D transition of mitochondrial complex I and its role in ROS generation. Biochim. Biophys. Acta (BBA)-Bioenerg. 2016;1857:946–957. doi: 10.1016/j.bbabio.2015.12.013. PubMed DOI PMC

Chen C.L., Kang P.T., Zhang L., Xiao K., Zweier J.L., Chilian W.M., Chen Y.R. Reperfusion mediates heme impairment with increased protein cysteine sulfonation of mitochondrial complex III in the post-ischemic heart. J. Mol. Cell. Cardiol. 2021;161:23–38. doi: 10.1016/j.yjmcc.2021.07.008. PubMed DOI PMC

Villalba J.M., Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free. Radic. Biol. Med. 2021;165:312–323. doi: 10.1016/j.freeradbiomed.2021.01.055. PubMed DOI

Manzar H., Abdulhussein D., Yap T.E., Cordeiro M.F. Cellular Consequences of Coenzyme Q10 Deficiency in Neurodegeneration of the Retina and Brain. Int. J. Mol. Sci. 2020;21:9299. doi: 10.3390/ijms21239299. PubMed DOI PMC

Yen H.C., Liu Y.C., Kan C.C., Wei H.J., Lee S.H., Wei Y.H., Feng Y.H., Chen C.W., Huang C.C. Disruption of the human COQ5-containing protein complex is associated with diminished coenzyme Q10 levels under two different conditions of mitochondrial energy deficiency. Biochim. Biophys. Acta. 2016;1860:1864–1876. doi: 10.1016/j.bbagen.2016.05.005. PubMed DOI

Lapointe C.P., Stefely J.A., Jochem A., Hutchins P.D., Wilson G.M., Kwiecien N.W., Coon J.J., Wickens M., Pagliarini D.J. Multi-omics Reveal Specific Targets of the RNA-Binding Protein Puf3p and Its Orchestration of Mitochondrial Biogenesis. Cell Syst. 2018;6:125–135. doi: 10.1016/j.cels.2017.11.012. PubMed DOI PMC

Energy Metabolism in the Inner Retina in Health and Glaucoma. Salviati L., Trevisson E., Doimo M., Navas P. Primary Coenzyme Q10 Deficiency. In: Adam M.P., Everman D.B., Mirzaa G.M., Pagon R.A., Wallace S.E., Bean L.J.H., Gripp K.W., Amemiya A., editors. GeneReviews®. University of Washington; Seattle, WA, USA: 1993. PubMed

Carelli V., Ross-Cisneros F.N., Sadun A.A. Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 2004;23:53–89. doi: 10.1016/j.preteyeres.2003.10.003. PubMed DOI

Blasi M.A., Bovina C., Carella G., Genova M.L., Jansen A.M., Lenaz G., Brancato R. Does coenzyme Q10 play a role in opposing oxidative stress in patients with age-related macular degeneration? Ophthalmologica. 2001;215:51–54. doi: 10.1159/000050826. PubMed DOI

Catarino C.B., von Livonius B., Priglinger C., Banik R., Matloob S., Tamhankar M.A., Castillo L., Friedburg C., Halfpenny C.A., Lincoln J.A., et al. Real-World Clinical Experience With Idebenone in the Treatment of Leber Hereditary Optic Neuropathy. J. Neuro-Ophthalmol. 2020;40:558–565. doi: 10.1097/WNO.0000000000001023. PubMed DOI PMC

Kim K.Y., Perkins G.A., Shim M.S., Bushong E., Alcasid N., Ju S., Ellisman M.H., Weinreb R.N., Ju W.K. DRP1 inhibition rescues retinal ganglion cells and their axons by preserving mitochondrial integrity in a mouse model of glaucoma. Cell Death Dis. 2015;6:e1839. doi: 10.1038/cddis.2015.180. PubMed DOI PMC

Del Dotto V., Mishra P., Vidoni S., Fogazza M., Maresca A., Caporali L., McCaffery J.M., Cappelletti M., Baruffini E., Lenaers G., et al. OPA1 Isoforms in the Hierarchical Organization of Mitochondrial Functions. Cell Rep. 2017;19:2557–2571. doi: 10.1016/j.celrep.2017.05.073. PubMed DOI

Del Dotto V., Fogazza M., Carelli V., Rugolo M., Zanna C. Eight human OPA1 isoforms, long and short: What are they for? Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2018;1859:263–269. doi: 10.1016/j.bbabio.2018.01.005. PubMed DOI

Lytvynchuk L., Ebbert A., Studenovska H., Nagymihály R., Josifovska N., Rais D., Popelka Š., Tichotová L., Nemesh Y., Čížková J., et al. Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs. Biomedicines. 2022;10:669. doi: 10.3390/biomedicines10030669. PubMed DOI PMC

Grotz S., Schafer J., Wunderlich K.A., Ellederova Z., Auch H., Bahr A., Runa-Vochozkova P., Fadl J., Arnold V., Ardan T., et al. Early disruption of photoreceptor cell architecture and loss of vision in a humanized pig model of usher syndromes. EMBO Mol. Med. 2022;14:e14817. doi: 10.15252/emmm.202114817. PubMed DOI PMC

Evers M.M., Miniarikova J., Juhas S., Valles A., Bohuslavova B., Juhasova J., Skalnikova H.K., Vodicka P., Valekova I., Brouwers C., et al. AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model. Mol. Ther. 2018;26:2163–2177. doi: 10.1016/j.ymthe.2018.06.021. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...